
pyscal
Release 3.0.0.dev.6

Sarath Menon

Jun 16, 2023

CONTENTS

1 Installation 3

2 Why version 3? 5
2.1 Version 3 is much faster . 5
2.2 Version 3 uses less memory . 5
2.3 What are reasons for these benefits? . 5
2.4 What are the other feature updates? . 6

3 Examples 7

4 Support, contributing and extending 9
4.1 Reporting and fixing bugs . 9
4.2 New features . 9

5 Help and support 11

6 Citing the code 13

7 Acknowledgements 15
7.1 Developer . 15
7.2 Contributers . 15
7.3 Acknowledgements . 15

8 License 17
8.1 pyscal License . 17
8.2 Voro++ license . 17
8.3 pybind 11 license . 18
8.4 sphinx theme license . 18

i

ii

pyscal, Release 3.0.0.dev.6

pyscal is a python module for the calculation of local atomic structural environments including Steinhardt’s bond
orientational order parameters during post-processing of atomistic simulation data. The core functionality of pyscal
is written in C++ with python wrappers using pybind11 which allows for fast calculations with possibilities for easy
expansion in python.

Steinhardt’s order parameters are widely used for identification of crystal structures. They are also used to identify if
an atom is solid or liquid. pyscal is inspired by BondOrderAnalysis code, but has since incorporated many additions
and modifications.

CONTENTS 1

https://dev.azure.com/sarathrmenon/pyscal/_build/latest?definitionId=1&branchName=master
https://codecov.io/gh/srmnitc/pyscal
https://mybinder.org/v2/gh/srmnitc/pybop/master?filepath=examples%2F
https://anaconda.org/conda-forge/pyscal
https://conda.anaconda.org/pyscal
https://joss.theoj.org/papers/168eca482155601dc517523899527a4e
https://anaconda.org/conda-forge/pyscal
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.784
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.784
https://pybind11.readthedocs.io/en/stable/intro.html
https://aip.scitation.org/doi/full/10.1063/1.4774084
https://link.springer.com/chapter/10.1007/b99429
https://homepage.univie.ac.at/wolfgang.lechner/bondorderparameter.html

pyscal, Release 3.0.0.dev.6

2 CONTENTS

CHAPTER

ONE

INSTALLATION

pyscal can be installed through conda:

conda install -c conda-forge/label/pyscal_dev -c conda-forge pyscal

3

pyscal, Release 3.0.0.dev.6

4 Chapter 1. Installation

CHAPTER

TWO

WHY VERSION 3?

pyscal v3 is a new version with mostly updated codebase and breaking changes. Anybody who has working pyscal
code will need to update it to get it working with this new version. Therefore, it is necessary to discuss why this new
version was needed and the benefits of updating.

2.1 Version 3 is much faster

In the plot below, the time needed to calculate neighbors with the ‘cutoff’ method for systems with varying number of
atoms with versions 2.10.15 and 3.0 is shown.

v3 is faster for all system sizes. At a system size of about 50,000 atoms, v3 is about 4x faster.

2.2 Version 3 uses less memory

A major issue with pyscal v2.x series was that it not useful for large system sizes due to the large amount of memory
needed. In the plot below, the memory usage of both versions for the same calculation above is shown.

v3 uses less memory, for a system size of 50,000 atoms, v3 uses 14x less memory. A more interesting feature is the
slope of the data, or how much the memory scales with the system size. For v3 it is only 0.008, while for v2 it is .12!
For a system of 1 million atoms, v2 would use 117 GB of memory while v3 would need only 8 GB, making larger
calculations accessible (these numbers will be updated after real use-case tests).

2.3 What are reasons for these benefits?

• The older C++ atoms class is deprecated. Instead, it is store as python dictionary. Therefore the copying between
python and C++ sides is avoided.

• The atoms python dictionary is directly exposed to the C++ side. The dictionary is passed by reference, which
allows in-place modification directly.

5

pyscal, Release 3.0.0.dev.6

2.4 What are the other feature updates?

The new version includes a number of new features and quality of life improvements. Please check the examples for
details.

6 Chapter 2. Why version 3?

CHAPTER

THREE

EXAMPLES

The gallery of examples below cover different ways in which calphy can be used to calculate free energies.

example01.jpg

Getting started with pyscal

example01.jpg

Creating structures

example01.jpg

More Atoms methods

7

pyscal, Release 3.0.0.dev.6

8 Chapter 3. Examples

CHAPTER

FOUR

SUPPORT, CONTRIBUTING AND EXTENDING

pyscal welcomes and appreciates contribution and extension to the module. Rather than local modifications, we request
that the modifications be submitted through a pull request, so that the module can be continuously improved.

4.1 Reporting and fixing bugs

In case a bug is found in the module, it can be reported on the issues page of the repository. After clicking on the new
issue button, there is template already provided for Bug report. Please choose this and make sure the necessary fields
are filled. Once a bug is reported, the status can once again monitored on the issues page. Additionally, you are of
course very welcome to fix any existing bugs.

4.2 New features

If you have an idea for new feature, you can submit a feature idea through the issues page of the repository. After
choosing new issue, please choose the template for feature request. As much as information as you can provide about
the new feauture would be greatly helpful. Additionally, you could also work on feature requests already on the issues
page. The following instructions will help you get started with local feature development.

4.2.1 Setting up local environment

1. The first step is to fork pyscal. A detailed tutorial on forking can be found here. After forking, clone the repository
to your local machine.

2. We recommend creating a virtual environment to test new features or improvements to features. See this link for
help on managing environments.

3. Once the environment is set up, you can create a new branch for your feature by git checkout -b
new_feauture.

4. Now implement the necessary feature.

5. Once done, you can reinstall pyscal by python setup.py install. After that please make sure that the exist-
ing tests work by running pytest tests/ from the main module folder.

6. If the tests work, you are almost done! If the new feature is not covered in existing tests, you can to write a new
test in the tests folder. pyscal uses pytest for tests. This link will help you get started.

7. Add the necessary docstrings for the new functions implemented. pyscal uses the numpy docstring format for
documentation.

9

https://github.com/srmnitc/pyscal/issues
https://github.com/srmnitc/pyscal/issues
https://help.github.com/en/articles/fork-a-repo
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
http://doc.pytest.org/en/latest/getting-started.html
https://numpydoc.readthedocs.io/en/latest/format.html

pyscal, Release 3.0.0.dev.6

8. Bonus task: Set up few examples that document how the feature works in the docs/source/ folder and link it
to the examples section.

9. Final step - Submit a pull request through github. Before you submit, please make sure that the new feature is
documented and has tests. Once the request is submitted, automated tests would be done. Your pull request will
fail the tests if - the unit tests fail, or if the test coverage falls below 80%. If all tests are successful, your feauture
will be incorporated to pyscal and your contributions will be credited.

If you have trouble with any of the steps, or you need help, please send an email and we will be happy to help! All of
the contributions are greatly appreciated and will be credited in Developers/Acknowledgements page.

10 Chapter 4. Support, contributing and extending

mailto:sarath.menon@pyscal.org

CHAPTER

FIVE

HELP AND SUPPORT

In case of bugs and feature improvements, you are welcome to create a new issue on the github repo. You are also
welcome to fix a bug or implement a feature. Please see the extending and contributing section for more details.

Any other questions or suggestions are welcome, please contact us.

11

https://github.com/pyscal/pyscal
https://pyscal.readthedocs.io/en/latest/extending.html
mailto:sarath.menon@pyscal.org

pyscal, Release 3.0.0.dev.6

12 Chapter 5. Help and support

CHAPTER

SIX

CITING THE CODE

If you use pyscal in your work, the citation of the following article will be greatly appreciated:

Sarath Menon, Grisell Díaz Leines and Jutta Rogal (2019). pyscal: A python module for structural analysis of atomic
environments. Journal of Open Source Software, 4(43), 1824, <https://doi.org/10.21105/joss.01824

Click to copy citation in bib format.

13

https://joss.theoj.org/papers/10.21105/joss.01824
https://joss.theoj.org/papers/10.21105/joss.01824

pyscal, Release 3.0.0.dev.6

14 Chapter 6. Citing the code

CHAPTER

SEVEN

ACKNOWLEDGEMENTS

7.1 Developer

• Sarath Menon
sarath.menon@pyscal.org

7.2 Contributers

• Jan Janßen - developing and maintaining a conda-forge recipe.

• Pedro Antonio Santos Flórez - addition of the pairwise multicomponent short range order parameter.

7.3 Acknowledgements

We acknowledge Bond order analysis code for the inspiration and the base for what later grew to be pyscal. We are
also thankful to the developers of Voro++ and pybind11 for developing the great tools that we could use in pyscal.
We are grateful for the help and support received during the E-CAM High Throughput Computing ESDW held in Turin
in 2018 and 2019. This module was developed at the Interdisciplinary Centre for Advanced Materials Simulation, at
the Ruhr University Bochum, Germany.

In addition, the following people are acknowledged:

• Grisell Díaz Leines

• Jutta Rogal

• Alberto Ferrari

• Abril Azócar Guzmán

• Matteo Rinaldi

• Yanyan Liang

• David W.H. Swenson

• Alan O’Cais

15

http://sarathmenon.me
https://jan-janssen.com/
https://conda-forge.org/
https://github.com/pedroantoniosantosf
https://github.com/WolfgangLechner/StructureAnalysis
https://pybind11.readthedocs.io/en/stable/
https://www.e-cam2020.eu/event/4424/?instance_id=71
https://www.polito.it/?lang=en
http://www.icams.de/content
https://www.ruhr-uni-bochum.de/en

pyscal, Release 3.0.0.dev.6

16 Chapter 7. Acknowledgements

CHAPTER

EIGHT

LICENSE

8.1 pyscal License

pyscal uses the BSD 3-Clause New License . A full description is available in the above link or in the repository.

In addition, pyscal license of other codes that pyscal uses are given below-

8.2 Voro++ license

Voro++ Copyright (c) 2008, The Regents of the University of California, through Lawrence Berkeley National Labo-
ratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.

17

https://github.com/srmnitc/pyscal/blob/master/LICENSE

pyscal, Release 3.0.0.dev.6

8.3 pybind 11 license

Copyright (c) 2016 Wenzel Jakob (wenzel.jakob@epfl.ch), All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without imposing a separate written license agreement
for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to
install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such
enhancements or derivative works thereof, in binary and source code form.

8.4 sphinx theme license

Copyright (c) 2007-2013 by the Sphinx team (see AUTHORS file). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

18 Chapter 8. License

mailto:wenzel.jakob@epfl.ch

	Installation
	Why version 3?
	Version 3 is much faster
	Version 3 uses less memory
	What are reasons for these benefits?
	What are the other feature updates?

	Examples
	Support, contributing and extending
	Reporting and fixing bugs
	New features
	Setting up local environment

	Help and support
	Citing the code
	Acknowledgements
	Developer
	Contributers
	Acknowledgements

	License
	pyscal License
	Voro++ license
	pybind 11 license
	sphinx theme license

