

    
      
          
            
  
pyscal

[image: _images/srmnitc.pyscal]
 [https://dev.azure.com/sarathrmenon/pyscal/_build/latest?definitionId=1&branchName=master][image: _images/badge.svg]
 [https://codecov.io/gh/srmnitc/pyscal][image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/srmnitc/pybop/master?filepath=examples%2F][image: https://anaconda.org/pyscal/pyscal/badges/installer/conda.svg]
 [https://anaconda.org/conda-forge/pyscal][image: _images/pyscal.svg]
 [https://conda.anaconda.org/pyscal][image: _images/status.svg]
 [https://joss.theoj.org/papers/168eca482155601dc517523899527a4e][image: _images/pyscal1.svg]
 [https://anaconda.org/conda-forge/pyscal]pyscal is a python module for the calculation of local atomic
structural environments including Steinhardt’s bond orientational order
parameters [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.784]
during post-processing of atomistic simulation data. The core
functionality of pyscal is written in C++ with python wrappers using
pybind11 [https://pybind11.readthedocs.io/en/stable/intro.html]
which allows for fast calculations with possibilities for easy expansion
in python.

Steinhardt’s order parameters are widely used for identification of
crystal
structures [https://aip.scitation.org/doi/full/10.1063/1.4774084].
They are also used to identify if an atom is solid or
liquid [https://link.springer.com/chapter/10.1007/b99429]. pyscal is
inspired by
BondOrderAnalysis [https://homepage.univie.ac.at/wolfgang.lechner/bondorderparameter.html]
code, but has since incorporated many additions and modifications.







            

          

      

      

    

  

    
      
          
            
  
Installation

pyscal can be installed through conda:

conda install -c conda-forge/label/pyscal_dev -c conda-forge pyscal








            

          

      

      

    

  

    
      
          
            
  
Why version 3?

pyscal v3 is a new version with mostly updated codebase and breaking changes. Anybody who has working pyscal code will need to update it to get it working with this new version. Therefore, it is necessary to discuss why this new version was needed and the benefits of updating.


Version 3 is much faster

In the plot below, the time needed to calculate neighbors with the ‘cutoff’ method for systems with varying number of atoms with versions 2.10.15 and 3.0 is shown.


v3 is faster for all system sizes. At a system size of about 50,000 atoms, v3 is about 4x faster.


  
    
    

    Examples
    

    

    

    

    
 
  

    
      
          
            
  
Examples

The gallery of examples below cover different ways in which calphy can be used to calculate free energies.





[image: ]


Getting started with pyscal









[image: ]


Creating structures









[image: ]


More Atoms methods














            

          

      

      

    

  

  
    
    

    Support, contributing and extending
    

    

    

    

    
 
  

    
      
          
            
  
Support, contributing and extending

pyscal welcomes and appreciates contribution and extension to the
module. Rather than local modifications, we request that the
modifications be submitted through a pull request, so that the module
can be continuously improved.


Reporting and fixing bugs

In case a bug is found in the module, it can be reported on the issues
page of the repository [https://github.com/srmnitc/pyscal/issues]. After
clicking on the new issue button, there is template already provided for
Bug report. Please choose this and make sure the necessary fields are
filled. Once a bug is reported, the status can once again monitored on
the issues page. Additionally, you are of course very welcome to fix any
existing bugs.



New features

If you have an idea for new feature, you can submit a feature idea
through the issues page of the
repository [https://github.com/srmnitc/pyscal/issues]. After choosing
new issue, please choose the template for feature request. As much as
information as you can provide about the new feauture would be greatly
helpful. Additionally, you could also work on feature requests already
on the issues page. The following instructions will help you get started
with local feature development.


Setting up local environment


	The first step is to fork pyscal. A detailed tutorial on forking can
be found here [https://help.github.com/en/articles/fork-a-repo].
After forking, clone the repository to your local machine.


	We recommend creating a virtual environment to test new features or
improvements to features. See this
link [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html]
for help on managing environments.


	Once the environment is set up, you can create a new branch for your
feature by git checkout -b new_feauture.


	Now implement the necessary feature.


	Once done, you can reinstall pyscal by python setup.py install.
After that please make sure that the existing tests work by running
pytest tests/ from the main module folder.


	If the tests work, you are almost done! If the new feature is not
covered in existing tests, you can to write a new test in the tests
folder. pyscal uses pytest for tests. This
link [http://doc.pytest.org/en/latest/getting-started.html] will
help you get started.


	Add the necessary docstrings for the new functions implemented.
pyscal uses the numpy docstring
format [https://numpydoc.readthedocs.io/en/latest/format.html] for
documentation.


	Bonus task: Set up few examples that document how the feature works
in the docs/source/ folder and link it to the examples section.


	Final step - Submit a pull request through github. Before you
submit, please make sure that the new feature is documented and has
tests. Once the request is submitted, automated tests would be done.
Your pull request will fail the tests if - the unit tests fail, or
if the test coverage falls below 80%. If all tests are successful,
your feauture will be incorporated to pyscal and your contributions
will be credited.




If you have trouble with any of the steps, or you need help, please
send an email and we will be happy to
help! All of the contributions are greatly appreciated and will be
credited in Developers/Acknowledgements page.






            

          

      

      

    

  

  
    
    

    Help and support
    

    

    

    

    
 
  

    
      
          
            
  
Help and support

In case of bugs and feature improvements, you are welcome to create a
new issue on the github repo [https://github.com/pyscal/pyscal]. You
are also welcome to fix a bug or implement a feature. Please see the
extending and
contributing [https://pyscal.readthedocs.io/en/latest/extending.html]
section for more details.

Any other questions or suggestions are welcome, please contact
us.




            

          

      

      

    

  

  
    
    

    Citing the code
    

    

    

    

    
 
  

    
      
          
            
  
Citing the code

If you use pyscal in your work, the citation of the following
article [https://joss.theoj.org/papers/10.21105/joss.01824] will be
greatly appreciated:

Sarath Menon, Grisell Díaz Leines and Jutta Rogal (2019). pyscal: A
python module for structural analysis of atomic environments. Journal of
Open Source Software, 4(43), 1824, <https://doi.org/10.21105/joss.01824

Click to copy citation in bib format [https://joss.theoj.org/papers/10.21105/joss.01824#].




            

          

      

      

    

  

  
    
    

    Acknowledgements
    

    

    

    

    
 
  

    
      
          
            
  
Acknowledgements


Developer


	Sarath
Menon [http://sarathmenon.me]

sarath.menon@pyscal.org






Contributers


	Jan Janßen [https://jan-janssen.com/] - developing and
maintaining a conda-forge [https://conda-forge.org/] recipe.


	Pedro Antonio Santos Flórez [https://github.com/pedroantoniosantosf] - addition of the pairwise multicomponent short range order parameter.






Acknowledgements

We acknowledge Bond order
analysis [https://github.com/WolfgangLechner/StructureAnalysis] code for the
inspiration and the base for what later grew to be pyscal. We are also
thankful to the developers of Voro++ and
pybind11 [https://pybind11.readthedocs.io/en/stable/] for developing
the great tools that we could use in pyscal.  We are grateful for the help and support received during the E-CAM High Throughput Computing ESDW [https://www.e-cam2020.eu/event/4424/?instance_id=71] held in
Turin [https://www.polito.it/?lang=en] in 2018 and 2019. This module was developed at the Interdisciplinary Centre for Advanced
Materials Simulation [http://www.icams.de/content], at the Ruhr
University Bochum [https://www.ruhr-uni-bochum.de/en], Germany.

In addition, the following people are acknowledged:


	Grisell Díaz Leines


	Jutta Rogal


	Alberto Ferrari


	Abril Azócar Guzmán


	Matteo Rinaldi


	Yanyan Liang


	David W.H. Swenson


	Alan O’Cais








            

          

      

      

    

  

  
    
    

    License
    

    

    

    

    
 
  

    
      
          
            
  
License


pyscal License

pyscal uses the BSD 3-Clause New License [https://github.com/srmnitc/pyscal/blob/master/LICENSE] . A full description is
available in the above link or in the repository.

In addition, pyscal license of other codes that pyscal uses are
given below-



Voro++ license

Voro++ Copyright (c) 2008, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any
required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:


	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.


	Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes,
patches, or upgrades to the features, functionality or performance of
the source code (“Enhancements”) to anyone; however, if you choose to
make your Enhancements available either publicly, or directly to
Lawrence Berkeley National Laboratory, without imposing a separate
written license agreement for such Enhancements, then you hereby grant
the following license: a non-exclusive, royalty-free perpetual license
to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.



pybind 11 license

Copyright (c) 2016 Wenzel Jakob (wenzel.jakob@epfl.ch), All rights
reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:


	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.


	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes,
patches, or upgrades to the features, functionality or performance of
the source code (“Enhancements”) to anyone; however, if you choose to
make your Enhancements available either publicly, or directly to the
author of this software, without imposing a separate written license
agreement for such Enhancements, then you hereby grant the following
license: a non-exclusive, royalty-free perpetual license to install,
use, modify, prepare derivative works, incorporate into other computer
software, distribute, and sublicense such enhancements or derivative
works thereof, in binary and source code form.



sphinx theme license

Copyright (c) 2007-2013 by the Sphinx team (see AUTHORS file). All
rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:


	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





            

          

      

      

    

  

  
    
    
    Python Module Index
    

    

    

    

    

 


  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pyscal	
       

     
       	
       	   
       pyscal.core	
       

     
       	
       	   
       pyscal.crystal_structures	
       

     
       	
       	   
       pyscal.misc	
       

     
       	
       	   
       pyscal.traj_process	
       

     
       	
       	   
       pyscal.trajectory	
       

   



            

          

      

      

    

  

  
    
    
    Index
    

    

    

    

    
 
  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 


_


  	
      	__init__() (pyscal.core.System method)

      
        	(pyscal.crystal_structures.ElementCreator method)


        	(pyscal.crystal_structures.Structure method)


        	(pyscal.trajectory.Timeslice method)


        	(pyscal.trajectory.Trajectory method)


      


  





A


  	
      	add_atoms() (pyscal.core.System method)


      	apply_mask() (pyscal.core.System method)


  

  	
      	apply_selection() (pyscal.core.System method)


      	atoms (pyscal.core.System property)


      	average_over_neighbors() (pyscal.core.System method)


  





B


  	
      	box (pyscal.core.System property)


  

  	
      	box_dimensions (pyscal.core.System property)


  





C


  	
      	calculate_angularcriteria() (pyscal.core.System method)


      	calculate_chiparams() (pyscal.core.System method)


      	calculate_disorder() (pyscal.core.System method)


      	calculate_q() (pyscal.core.System method)


  

  	
      	calculate_rdf() (pyscal.core.System method)


      	cluster_atoms() (pyscal.core.System method)


      	compare_atomic_env() (in module pyscal.misc)


      	composition (pyscal.core.System property)


      	concentration (pyscal.core.System property)


  





D


  	
      	delete() (pyscal.core.System method)


  

  	
      	direct_coordinates (pyscal.core.System property)


  





E


  	
      	element (pyscal.crystal_structures.Structure attribute)


  

  	
      	ElementCreator (class in pyscal.crystal_structures)


      	embed_in_cubic_box() (pyscal.core.System method)


  





F


  	
      	find_largest_cluster() (pyscal.core.System method)


      	find_neighbors() (pyscal.core.System method)


  

  	
      	find_solids() (pyscal.core.System method)


      	find_tetrahedral_voids() (in module pyscal.misc)


      	from_structure() (pyscal.core.System class method)


  





G


  	
      	general_lattice() (in module pyscal.crystal_structures)


      	get_block() (pyscal.trajectory.Trajectory method)


  

  	
      	get_concentration() (pyscal.core.System method)


      	get_distance() (pyscal.core.System method)


  





I


  	
      	iter_atoms() (pyscal.core.System method)


  





L


  	
      	lattice (pyscal.crystal_structures.Structure attribute)


  

  	
      	LatticeCreator (class in pyscal.crystal_structures)


      	load() (pyscal.trajectory.Trajectory method)


  





M


  	
      	
    module

      
        	pyscal.core


        	pyscal.crystal_structures


        	pyscal.misc


        	pyscal.traj_process


        	pyscal.trajectory


      


  





N


  	
      	natoms (pyscal.core.System property)


  





P


  	
      	
    pyscal.core

      
        	module


      


      	
    pyscal.crystal_structures

      
        	module


      


      	
    pyscal.misc

      
        	module


      


  

  	
      	
    pyscal.traj_process

      
        	module


      


      	
    pyscal.trajectory

      
        	module


      


  





R


  	
      	read_file() (in module pyscal.traj_process)


      	read_inputfile() (pyscal.core.System method)


      	remap_atoms_into_box() (pyscal.core.System method)


  

  	
      	remove_mask() (pyscal.core.System method)


      	remove_selection() (pyscal.core.System method)


      	repeat() (pyscal.core.System method)


      	reset_neighbors() (pyscal.core.System method)


  





S


  	
      	split_trajectory() (in module pyscal.traj_process)


      	Structure (class in pyscal.crystal_structures)


  

  	
      	structure_creator() (in module pyscal.crystal_structures)


      	structure_dict() (pyscal.crystal_structures.Structure method)


      	System (class in pyscal.core)


  





T


  	
      	Timeslice (class in pyscal.trajectory)


      	to_ase() (pyscal.core.System method)

      
        	(pyscal.trajectory.Timeslice method)


      


      	to_dict() (pyscal.trajectory.Timeslice method)


  

  	
      	to_file() (pyscal.core.System method)

      
        	(pyscal.trajectory.Timeslice method)


      


      	to_system() (pyscal.trajectory.Timeslice method)


      	Trajectory (class in pyscal.trajectory)


  





U


  	
      	unload() (pyscal.trajectory.Trajectory method)


  





V


  	
      	volume (pyscal.core.System property)


  





W


  	
      	write_file() (in module pyscal.traj_process)


  







            

          

      

      

    

  

  
    
    

    Methods and examples
    

    

    

    

    
 
  

    
      
          
            
  
Methods and examples



	Methods
	Methods to calculate neighbors of a particle
	Fixed cutoff method

	Adaptive cutoff methods
	Solid angle based nearest neighbor algorithm (SANN)

	Adaptive cutoff method





	Voronoi tessellation

	References





	Steinhardt’s parameters
	Averaged Steinhardt’s parameters

	Voronoi weighted Steinhardt’s parameters

	References





	Classification of atoms as solid or liquid
	References





	Disorder parameter
	References





	Angular parameters
	Angular criteria for identification of diamond structure

	\(\chi\) parameters for structural identification

	References





	Voronoi tessellation to identify local structures
	References





	Centrosymmetry parameter
	References





	Entropy - Enthalpy parameters
	Entropy fingerprint

	References
















            

          

      

      

    

  

  
    
    

    Methods
    

    

    

    

    
 
  

    
      
          
            
  
Methods



	Methods to calculate neighbors of a particle
	Fixed cutoff method

	Adaptive cutoff methods
	Solid angle based nearest neighbor algorithm (SANN)

	Adaptive cutoff method





	Voronoi tessellation

	References





	Steinhardt’s parameters
	Averaged Steinhardt’s parameters

	Voronoi weighted Steinhardt’s parameters

	References





	Classification of atoms as solid or liquid
	References





	Disorder parameter
	References





	Angular parameters
	Angular criteria for identification of diamond structure

	\(\chi\) parameters for structural identification

	References





	Voronoi tessellation to identify local structures
	References





	Centrosymmetry parameter
	References





	Entropy - Enthalpy parameters
	Entropy fingerprint

	References












            

          

      

      

    

  

  
    
    

    pyscal reference
    

    

    

    

    
 
  

    
      
          
            
  
pyscal reference



	pyscal Reference
	pyscal.core module
	System
	System.__init__()

	System.add_atoms()

	System.apply_mask()

	System.apply_selection()

	System.atoms

	System.average_over_neighbors()

	System.box

	System.box_dimensions

	System.calculate_angularcriteria()

	System.calculate_chiparams()

	System.calculate_disorder()

	System.calculate_q()

	System.calculate_rdf()

	System.cluster_atoms()

	System.composition

	System.concentration

	System.delete()

	System.direct_coordinates

	System.embed_in_cubic_box()

	System.find_largest_cluster()

	System.find_neighbors()

	System.find_solids()

	System.from_structure()

	System.get_concentration()

	System.get_distance()

	System.iter_atoms()

	System.natoms

	System.read_inputfile()

	System.remap_atoms_into_box()

	System.remove_mask()

	System.remove_selection()

	System.repeat()

	System.reset_neighbors()

	System.to_ase()

	System.to_file()

	System.volume









	pyscal.crystal_structures module
	ElementCreator
	ElementCreator.__init__()





	LatticeCreator

	Structure
	Structure.element

	Structure.lattice

	Structure.__init__()

	Structure.structure_dict()





	general_lattice()

	structure_creator()





	pyscal.trajectory module
	Timeslice
	Timeslice.__init__()

	Timeslice.to_ase()

	Timeslice.to_dict()

	Timeslice.to_file()

	Timeslice.to_system()





	Trajectory
	Trajectory.__init__()

	Trajectory.get_block()

	Trajectory.load()

	Trajectory.unload()









	pyscal.traj_process module
	read_file()

	split_trajectory()

	write_file()





	pyscal.misc module
	compare_atomic_env()

	find_tetrahedral_voids()
















            

          

      

      

    

  

  
    
    

    Publications and Projects
    

    

    

    

    
 
  

    
      
          
            
  
Publications and Projects



	Publications using pyscal

	Projects using pyscal








            

          

      

      

    

  

  
    
    

    pyscal Reference
    

    

    

    

    
 
  

    
      
          
            
  
pyscal Reference


pyscal.core module

Main module of pyscal. This module contains definitions of the two major
classes in pyscal - the System and Atom.
Atom is a pure pybind11 class whereas System is a hybrid class with additional
python definitions. For the ease of use, Atom class should be imported from the core
module. The original pybind11 definitions of Atom and System can be found in catom
and csystem respectively.


	
class pyscal.core.System(filename=None, format='lammps-dump', compressed=False, customkeys=None)

	Bases: object

Python class for holding the properties of an atomic configuration


	
__init__(filename=None, format='lammps-dump', compressed=False, customkeys=None)

	




	
add_atoms(atoms)

	Cleanly add a given list of atoms


	Parameters:

	atoms (dict) – 



	Return type:

	None










	
apply_mask(mask_type='primary', ids=None, indices=None, condition=None, selection=False)

	Notes

Masks can be used to exclude atoms from neighbor calculations. An atom for which
mask is set to True is excluded from the calculation. There are two types of masks,
primary or secondary. For example, neighbors are being calculated for a central
atom i. The neighbor atom is denoted as j. If primary mask of i is True, no neighbor
calculation is carried out for i. If it is False, i is considered. Now if secondary
mask of j is True, it will not included in the list of neighbors of i even if it is within
the cutoff distance. The primary mask of j has no effect in this situation.

An example situation can be to calculate the local concentration around Ni atoms in a NiAl
structure. In this case, the primary mask of all Al atoms can be set to True so that
only Ni atoms are considered. Now, in a second case, the task is to count the number of Al
atoms around each Ni atom. For this case, the primary mask of all Al atoms can be set to True,
and the secondary mask of all Ni atoms can be set to True.

The masks for ghost atoms are copied from the corresponding mask for real atoms.






	
apply_selection(ids=None, indices=None, condition=None)

	




	
property atoms

	




	
average_over_neighbors(key, include_self=True)

	Perform a simple average over neighbor atoms


	Parameters:

	
	key (string) – atom property


	include_self (bool, optional) – If True, include the host atom in the calculation













	
property box

	Wrap for inbuilt box






	
property box_dimensions

	




	
calculate_angularcriteria()

	Calculate the angular criteria for each atom


	Parameters:

	None – 



	Return type:

	None





Notes

Calculates the angular criteria for each atom as defined in [1]_. Angular criteria is
useful for identification of diamond cubic structures. Angular criteria is defined by,


\[A = \sum_{i=1}^6 (\cos(\theta_i) + \frac{1}{3})^2\]

where cos(theta) is the angle size suspended by each pair of neighbors of the central
atom. A will have a value close to 0 for structures if the angles are close to 109 degrees.
The calculated A parameter for each atom can be accessed by system.angular

References



[1]
Uttormark, MJ, Thompson, MO, Clancy, P, Phys. Rev. B 47, 1993








	
calculate_chiparams(angles=False)

	Calculate the chi param vector for each atom


	Parameters:

	angles (bool, optional) – If True, return the list of cosines of all neighbor pairs



	Returns:

	angles – list of all cosine values, returned only if angles is True.



	Return type:

	array of floats





Notes

This method tries to distinguish between crystal structures by finding the cosines of angles
formed by an atom with its neighbors. These cosines are then historgrammed with bins
[-1.0, -0.945, -0.915, -0.755, -0.705, -0.195, 0.195, 0.245, 0.795, 1.0] to find a vector for
each atom that is indicative of its local coordination. Compared to chi parameters from chi_0 to
chi_7 in the associated publication, the vector here is from chi_0 to chi_8. This is due to an additional
chi parameter which measures the number of neighbors between cosines -0.705 to -0.195.
Parameter nlimit specifies the number of nearest neighbors to be included in the analysis to find the cutoff.
If parameter angles is true, an array of all cosine values is returned. The publication further provides
combinations of chi parameters for structural identification which is not implemented here. The calculated
chi params can be accessed using chiparams.

References



[1]
Ackland, Jones, Phys. Rev. B 73, 2006








	
calculate_disorder(averaged=False, q=6)

	Calculate the disorder criteria for each atom


	Parameters:

	
	averaged (bool, optional) – If True, calculate the averaged disorder. Default False.


	q (int, optional) – The Steinhardt parameter value over which the bonds have to be calculated.
Default 6.






	Return type:

	None





Notes

Calculate the disorder criteria as introduced in [1]. The disorder criteria value for each atom is defined by,
.. math:

D_j = \frac{1}{N_b^j} \sum_{i=1}^{N_b} [ S_{jj} + S_{kk} -2S_{jk}]





where .. math:: S_{ij} = sum_{m=-6}^6 q_{6m}(i) q_{6m}^*(i)

Any q value other than six can also be used. This can be specified using the q argument.

The keyword averaged is True, the disorder value is averaged over the atom and its neighbors.
For ordered systems, the value of disorder would be zero which would increase
and reach one for disordered systems.

This function creates two new attributes for this class: disorder and avg_disorder.

References



[1]
Kawasaki, T, Onuki, A, J. Chem. Phys. 135, 2011








	
calculate_q(q, averaged=False, continuous_algorithm=False)

	Find the Steinhardt parameter q_l for all atoms.


	Parameters:

	
	q (int or list of ints) – A list of all Steinhardt parameters to be found.


	averaged (bool, optional) – If True, return the averaged q values, default False


	continuous_algorithm (bool, optional) – See Notes for description.






	Returns:

	q – calculated q values



	Return type:

	list of floats





Notes

Enables calculation of the Steinhardt parameters [1] q. The type of
q values depend on the method used to calculate neighbors. See the description
find_neighbors() for more details.

The option continuous_algorithm specifies which algorithm to use for calculations. If False,
an algorithm [3] is used. The C++ algorithm is faster is a large, consecutive number of q values (> 200)
are to be calculated.

This function creates three new attributes for this class: qx, qx_real and qx_imag,
where stands for the q number.

References



[1]
Steinhardt, PJ, Nelson, DR, Ronchetti, M. Phys Rev B 28, 1983



[2]
Lechner, W, Dellago, C, J Chem Phys, 2013








	
calculate_rdf(rmin=0, rmax=5.0, bins=100)

	Calculate the radial distribution function.


	Parameters:

	
	rmin (float, optional) – minimum value of the distance histogram. Default 0.0.


	rmax (float, optional) – maximum value of the distance histogram. Default 5.0


	bins (int) – number of bins in the histogram






	Returns:

	
	rdf (array of ints) – Radial distribution function


	r (array of floats) – radius in distance units















	
cluster_atoms(condition, largest=True, cutoff=0)

	Cluster atoms based on a property


	Parameters:

	
	condition (callable or atom property) – Either function which should take an Atom object, and give a True/False output
or an attribute of atom class which has value or 1 or 0.


	largest (bool, optional) – If True returns the size of the largest cluster. Default False.


	cutoff (float, optional) – If specified, use this cutoff for calculation of clusters. By default uses the cutoff
used for neighbor calculation.






	Returns:

	lc – Size of the largest cluster. Returned only if largest is True.



	Return type:

	int





Notes

This function helps to cluster atoms based on a defined property. This property
is defined by the user through the argument condition which is passed as a parameter.
condition should be a boolean array the same length as number of atoms in the system.






	
property composition

	




	
property concentration

	




	
delete(ids=None, indices=None, condition=None, selection=False)

	




	
property direct_coordinates

	




	
embed_in_cubic_box(input_box=None, return_box=False)

	Embedded the triclinic box in a cubic box






	
find_largest_cluster()

	Find largest cluster among given clusters


	Parameters:

	None – 



	Returns:

	lc – Size of the largest cluster.



	Return type:

	int










	
find_neighbors(method='cutoff', cutoff=0, threshold=2, voroexp=1, padding=1.2, nlimit=6, cells=None, nmax=12, assign_neighbor=True)

	Find neighbors of all atoms in the System.


	Parameters:

	method ({'cutoff', 'voronoi', 'number'}) – cutoff method finds neighbors of an atom within a specified or adaptive cutoff distance from the atom.
voronoi method finds atoms that share a Voronoi polyhedra face with the atom. Default, cutoff
number method finds a specified number of closest neighbors to the given atom. Number only populates






	cutoff{ float, ‘sann’, ‘adaptive’}
	the cutoff distance to be used for the cutoff based neighbor calculation method described above.
If the value is specified as 0 or adaptive, adaptive method is used.
If the value is specified as sann, sann algorithm is used.



	thresholdfloat, optional
	only used if cutoff=adaptive. A threshold which is used as safe limit for calculation of cutoff.



	voroexpint, optional
	only used if method=voronoi. Power of the neighbor weight used to weight the contribution of each atom towards
Steinhardt parameter values. Default 1.



	paddingdouble, optional
	only used if cutoff=adaptive or cutoff=number. A safe padding value used after an adaptive cutoff is found. Default 1.2.



	nlimitint, optional
	only used if cutoff=adaptive. The number of particles to be considered for the calculation of adaptive cutoff.
Default 6.



	cellsbool, optional
	If True, always use cell lists. Default None.



	nmaxint, optional
	only used if cutoff=number. The number of closest neighbors to be found for each atom. Default 12






	Return type:

	None



	Raises:

	
	RuntimeWarning – raised when threshold value is too low. A low threshold value will lead to ‘sann’ algorithm not converging
    when finding a neighbor. This function will try to automatically increase threshold and check again.


	RuntimeError – raised when neighbor search was unsuccessful. This is due to a low threshold value.








Notes

This function calculates the neighbors of each particle. There are several ways to do this. A complete description of
the methods can be found here [https://pyscal.readthedocs.io/en/latest/nearestneighbormethods.html].

Method cutoff and specifying a cutoff radius uses the traditional approach being the one in which the neighbors of an atom
are the ones that lie in the cutoff distance around it.

In order to reduce time during the distance sorting during thefind_neighbors adaptive methods, pyscal sets an initial guess for a cutoff distance.
This is calculated as,


\[r_{initial} = threshold * (simulation~box~volume/ number~of~particles)^{(1/3)}\]

threshold is a safe multiplier used for the guess value and can be set using the threshold keyword.

In Method cutoff, if cutoff='adaptive', an adaptive cutoff is found during runtime for each atom [1].
Setting the cutoff radius to 0 also uses this algorithm. The cutoff for an atom i is found using,


\[r_c(i) = padding * ((1/nlimit) * \sum_{j=1}^{nlimit}(r_{ij}))\]

padding is a safe multiplier to the cutoff distance that can be set through the keyword padding. nlimit keyword sets the
limit for the top nlimit atoms to be taken into account to calculate the cutoff radius.

In Method cutoff, if cutoff='sann', sann algorithm is used [2]. There are no parameters to tune sann algorithm.

The second approach is using Voronoi polyhedra which also assigns a weight to each neighbor in the ratio of the face area between the two atoms.
Higher powers of this weight can also be used [3]. The keyword voroexp
can be used to set this weight.

If method is number, instead of using a cutoff value for finding neighbors, a specified number of closest atoms are
found. This number can be set through the argument nmax.

If cells is None, cell lists are used if number of atoms are higher than 2500. If True, cell lists are always used.


Warning

Adaptive and number cutoff uses a padding over the intial guessed “neighbor distance”. By default it is 2. In case
of a warning that threshold is inadequate, this parameter should be further increased. High/low value
of this parameter will correspond to the time taken for finding neighbors.



References



[1]
Stukowski, A, Model Simul Mater SC 20, 2012



[2]
van Meel, JA, Filion, L, Valeriani, C, Frenkel, D, J Chem Phys 234107, 2012



[3]
Haeberle, J, Sperl, M, Born, P, arxiv 2019








	
find_solids(bonds=0.5, threshold=0.5, avgthreshold=0.6, cluster=True, q=6, cutoff=0, right=True)

	Distinguish solid and liquid atoms in the system.
:param bonds: Minimum number of solid bonds for an atom to be identified as


a solid if the value is an integer. Minimum fraction of neighbors
of an atom that should be solid for an atom to be solid if the
value is float between 0-1. Default 0.5.





	Parameters:

	
	threshold (double, optional) – Solid bond cutoff value. Default 0.5.


	avgthreshold (double, optional) – Value required for Averaged solid bond cutoff for an atom to be identified
as solid. Default 0.6.


	cluster (bool, optional) – If True, cluster the solid atoms and return the number of atoms in the largest
cluster.


	q (int, optional) – The Steinhardt parameter value over which the bonds have to be calculated.
Default 6.


	cutoff (double, optional) – Separate value used for cluster classification. If not specified, cutoff used
for finding neighbors is used.


	right (bool, optional) – If true, greater than comparison is to be used for finding solid particles.
default True.






	Returns:

	solid – Size of the largest solid cluster. Returned only if cluster=True.



	Return type:

	int





Notes

The neighbors should be calculated before running this function.
Check find_neighbors() method.

bonds define the number of solid bonds of an atom to be identified as solid.
Two particles are said to be ‘bonded’ if [1],
.. math:: s_{ij} = sum_{m=-6}^6 q_{6m}(i) q_{6m}^*(i) geq threshold
where threshold values is also an optional parameter.

If the value of bonds is a fraction between 0 and 1, at least that much of an atom’s neighbors
should be solid for the atom to be solid.

An additional parameter avgthreshold is an additional parameter to improve solid-liquid distinction.

In addition to having a the specified number of bonds,


\[\langle s_{ij} \rangle > avgthreshold\]

also needs to be satisfied. In case another q value has to be used for calculation of S_ij, it can be
set used the q attribute. In the above formulations, > comparison for threshold and avgthreshold
can be changed to < by setting the keyword right to False.

If cluster is True, a clustering is done for all solid particles. See find_clusters()
for more details.

References



[1]
Auer, S, Frenkel, D. Adv Polym Sci 173, 2005








	
classmethod from_structure(structure, lattice_constant=1.0, repetitions=None, ca_ratio=1.633, noise=0, element=None, chemical_symbol=None)

	




	
get_concentration()

	Return a dict containing the concentration of the system


	Parameters:

	None – 



	Returns:

	condict – dict of concentration values



	Return type:

	dict










	
get_distance(pos1, pos2, vector=False)

	Get the distance between two atoms.


	Parameters:

	
	pos1 (list) – first atom position


	pos2 (list) – second atom position


	vector (bool, optional) – If True, return the vector between two atoms






	Returns:

	distance – distance between the first and second atom.



	Return type:

	double





Notes

Periodic boundary conditions are assumed by default.






	
iter_atoms()

	




	
property natoms

	




	
read_inputfile(filename, format='lammps-dump', compressed=False, customkeys=None)

	Read input file that contains the information of system configuration.


	Parameters:

	
	filename (string) – name of the input file.


	format ({'lammps-dump', 'poscar', 'ase', 'mdtraj'}) – format of the input file, in case of ase the ASE Atoms object


	compressed (bool, optional) – If True, force to read a gz compressed format, default False.


	customkeys (list) – A list containing names of headers of extra data that needs to be read in from the
input file.






	Return type:

	None





Notes

format keyword specifies the format of the input file. Currently only
a lammps-dump and poscar files are supported.  Additionaly, the widely
use Atomic Simulation environment (https://wiki.fysik.dtu.dk/ase/ase/ase.html).
mdtraj objects (http://mdtraj.org/1.9.3/) are also supported by using the keyword
‘mdtraj’ for format. Please note that triclinic boxes are not yet supported for
mdtraj format.
Atoms object can also be used directly. This function uses the
traj_process() module to process a file which is then assigned to system.

compressed keyword is not required if a file ends with .gz extension, it is
automatically treated as a compressed file.

Triclinic simulation boxes can also be read in.

If custom_keys are provided, this extra information is read in from input files if
available. This information is can be accessed directly as self.atoms[‘customkey’]






	
remap_atoms_into_box()

	Go through atoms in the list and remap them into the bix






	
remove_mask(mask_type='primary', ids=None, indices=None, condition=None, selection=False)

	Remove applied masks


	Parameters:

	mask_type (string, optional) – type of mask to be applied, either primary, secondary or all



	Return type:

	None










	
remove_selection(ids=None, indices=None, condition=None)

	




	
repeat(repetitions, atoms=None, ghost=False, scale_box=True, assign=False, return_atoms=False)

	




	
reset_neighbors()

	Reset the neighbors of all atoms in the system.


	Parameters:

	None – 



	Return type:

	None





Notes

It is used automatically when neighbors are recalculated.






	
to_ase(species=None)

	Convert system to an ASE Atoms object


	Parameters:

	species (list of string) – The chemical species



	Return type:

	None










	
to_file(outfile, format='lammps-dump', customkeys=None, customvals=None, compressed=False, timestep=0, species=None)

	Save the system instance to a trajectory file.


	Parameters:

	
	outfile (string) – name of the output file


	format (string, {'lammps-dump', 'lammps-data', 'poscar'}) – format of the output file, default lammps-dump
Currently only lammps-dump format is supported.


	customkeys (list of strings, optional) – a list of extra atom wise values to be written in the output file.


	customvals (list or list of lists, optional) – If customkey is specified, customvals take an array of the same length
as number of atoms, which contains the values to be written out.


	compressed (bool, optional) – If true, the output is written as a compressed file.


	timestep (int, optional) – timestep to be written to file. default 0


	species (None, optional) – species of the atoms. Required if any format other than ‘lammps-dump’ is used. Required
for convertion to ase object.






	Return type:

	None





Notes

to_file method can handle a number of file formats. The most customizable format is the
lammps-dump which can take a custom options using customkeys and customvals. customkeys
will be the header written to the dump file. It can be any Atom attribute, any property
stored in custom variable of the Atom, or calculated q values which can be given by q4,
aq4 etc. External values can also be provided using customvals option. customvals array
should be of the same length as the number of atoms in the system.

For all other formats, ASE is used to write out the file, and hence the species keyword
needs to be specified. If initially, an ASE object was used to create the System, species
keyword will already be saved, and need not be specified. In other cases, species should
be a list of atomic species in the System. For example [“Cu”] or [“Cu”, “Al”], depending
on the number of species in the System. In the above case, atoms of type 1 will be mapped to
Cu and of type 2 will be mapped to Al. For a complete list of formats that ASE can handle,
see here [https://wiki.fysik.dtu.dk/ase/ase/io/io.html] .






	
property volume

	Volume of box











pyscal.crystal_structures module

pyscal module for creating crystal structures.


	
class pyscal.crystal_structures.ElementCreator(element_dict)

	Bases: object

Create an elementary structure


	
__init__(element_dict)

	








	
class pyscal.crystal_structures.LatticeCreator(element_dict)

	Bases: ElementCreator

Create a lattice






	
class pyscal.crystal_structures.Structure

	Bases: object

A class for structure creation


	
element

	create elementary structures






	
lattice

	create structures by specifying lattice






	
__init__()

	




	
structure_dict(structure)

	








	
pyscal.crystal_structures.general_lattice(species, positions, scaling_factors=[1.0, 1.0, 1.0], lattice_constant=1.0, repetitions=None, noise=0, element=None)

	Create a general lattice structure.


	species: list
	list of per-atom species



	positions:
	list of relative positions positions of reach atom (between 0-1)



	scaling_fractors:
	factors with which the unit cell should be scaled, for example hcp could
have [1,1.73, 1.63]. Default [1,1,1]



	lattice_constantfloat, optional
	lattice constant of the crystal structure, default 1



	repetitionslist of ints of len 3, optional
	of type [nx, ny, nz], repetions of the unit cell in x, y and z directions.
default [1, 1, 1].



	noisefloat, optional
	If provided add normally distributed noise with standard deviation noise to the atomic positions.



	elementstring, optional
	The chemical element










	
pyscal.crystal_structures.structure_creator(structure, lattice_constant=1.0, repetitions=None, ca_ratio=1.633, noise=0, element=None)

	Create a crystal structure and return it as a System object.


	Parameters:

	
	structure ({'sc', 'bcc', 'fcc', 'hcp', 'diamond', 'a15' or 'l12'}) – type of the crystal structure


	lattice_constant (float, optional) – lattice constant of the crystal structure, default 1


	repetitions (list of ints of len 3, optional) – of type [nx, ny, nz], repetions of the unit cell in x, y and z directions.
default [1, 1, 1].


	ca_ratio (float, optional) – ratio of c/a for hcp structures, default 1.633


	noise (float, optional) – If provided add normally distributed noise with standard deviation noise to the atomic positions.


	element (string, optional) – The chemical element






	Returns:

	System – system will be populated with given atoms and simulation box



	Return type:

	pyscal System





Examples

>>> sys = structure_creator('bcc', lattice_constant=3.48, repetitions=[2,2,2])











pyscal.trajectory module


	
class pyscal.trajectory.Timeslice(trajectory, blocklist)

	Bases: object

Timeslice containing info about a single time slice
Timeslices can also be added to each


	
__init__(trajectory, blocklist)

	Initialize instance with data






	
to_ase(species=None)

	Get block as Ase objects


	Parameters:

	blockno (int) – number of the block to be read, starts from 0



	Returns:

	sys



	Return type:

	ASE object










	
to_dict()

	Get the required block as data






	
to_file(outfile, mode='w')

	Get block as outputfile


	Parameters:

	
	outfile (string) – name of output file


	mode (string) – write mode to be used, optional
default “w” write
also can be “a” to append.






	Return type:

	None










	
to_system(customkeys=None)

	Get block as pyscal system


	Parameters:

	blockno (int) – number of the block to be read, starts from 0



	Returns:

	sys – pyscal System



	Return type:

	System














	
class pyscal.trajectory.Trajectory(filename)

	Bases: object

A Trajectory class for LAMMPS


	
__init__(filename)

	Initiaze the class


	Parameters:

	
	filename (string) – name of the inputfile


	customkeys (list of string) – keys other than position, id that needs to be read
in from the input file













	
get_block(blockno)

	Get a block from the file as raw data


	Parameters:

	blockno (int) – number of the block to be read, starts from 0



	Returns:

	data – list of strings containing data



	Return type:

	list










	
load(blockno)

	Load the data of a block into memory as a dictionary
of numpy arrays


	Parameters:

	blockno (int) – number of the block to be read, starts from 0



	Return type:

	None





Notes

When the data of a block is loaded, it is accessible
through Trajectory.data[x]. This data can then be
modified. When the block is written out, the modified
data is written instead of existing one. But, loaded
data is kept in memory until unloaded using unload
method.






	
unload(blockno)

	Unload the data that is loaded to memory using
load method


	Parameters:

	blockno (int) – number of the block to be read, starts from 0



	Return type:

	None















pyscal.traj_process module

pyscal module containing methods for processing of a trajectory. Methods for
reading of input files formats, writing of output files etc are provided in
this module.


	
pyscal.traj_process.read_file(filename, format='lammps-dump', compressed=False, customkeys=None)

	Read input file


	Parameters:

	
	filename (string) – name of the input file.


	format ({'lammps-dump', 'poscar', 'ase', 'mdtraj'}) – format of the input file, in case of ase the ASE Atoms object


	compressed (bool, optional) – If True, force to read a gz compressed format, default False.


	customkeys (list) – A list containing names of headers of extra data that needs to be read in from the
input file.






	Return type:

	None










	
pyscal.traj_process.split_trajectory(infile, format='lammps-dump', compressed=False)

	Read in a trajectory file and convert it to individual time slices.


	Parameters:

	
	filename (string) – name of input file


	format (format of the input file) – only lammps-dump is supported now.


	compressed (bool, optional) – force to read a gz zipped file. If the filename ends with .gz, use of this keyword is not
necessary.






	Returns:

	snaps – a list of filenames which contain individual frames from the main trajectory.



	Return type:

	list of strings





Notes

This is a wrapper function around split_traj_lammps_dump function.






	
pyscal.traj_process.write_file(sys, outfile, format='lammps-dump', compressed=False, customkeys=None, customvals=None, timestep=0, species=None)

	Write the state of the system to a trajectory file.


	Parameters:

	
	sys (System object) – the system object to be written out


	outfile (string) – name of the output file


	format (string, optional) – format of the output file


	compressed (bool, default false) – write a .gz format


	customkey (string or list of strings, optional) – If specified, it adds this custom column to the dump file. Default None.


	customvals (list or list of lists, optional) – If customkey is specified, customvals take an array of the same length
as number of atoms, which contains the values to be written out.


	timestep (int, optional) – Specify the timestep value, default 0


	species (None, optional) – species of the atoms. Required if any format other than ‘lammps-dump’ is used. Required
for convertion to ase object.






	Return type:

	None











pyscal.misc module


	
pyscal.misc.compare_atomic_env(infile, atomtype=2, precision=2, format='poscar', print_results=True, return_system=False)

	Compare the atomic environment of given types of atoms
in the inputfile. The comparison is made in terms of Voronoi
volume and Voronoi fingerprint.


	Parameters:

	
	infile (string) – name of the inputfile


	atomtype (int, optional) – type of the atom
default 2


	precision (float, optional) – precision for comparing Voronoi volumes
default 3


	format (string, optional) – format of the input file
default poscar


	print_results (bool, optional) – if True, print the results. If False, return the data
instead. default True


	return_system (bool, optional) – if True, return the system object.
default False






	Returns:

	
	vvx (list of floats) – unique Voronoi volumes. Returned only if print results is False


	vrx (list of strings) – unique Voronoi polyhedra. Returned only if print results is False


	vvc (list of ints) – number of unique quantities specified above. Returned only if print results is False















	
pyscal.misc.find_tetrahedral_voids(infile, format='poscar', print_results=True, return_system=False, direct_coordinates=True, precision=0.1)

	Check for tetrahedral voids in the system


	Parameters:

	
	infile (string) – name of the input file


	format (string) – format of the input file, optional
default poscar


	print_results (bool, optional) – if True, print the results. If False, return the data
instead. default True


	return_system (bool, optional) – if True, return the system object.
default False


	direct_coordinates (bool, optional) – if True, results are provided in direct coordinates
default False


	precision (int, optional) – the number of digits to check for distances.
default 1






	Returns:

	
	types (list of atom types)


	volumes (list of atom volumes)


	pos (list of atom positions)


	sys (system object, returns only if return_sys is True)


















            

          

      

      

    

  

  
    
    

    Getting started with pyscal
    

    

    

    

    

    
 
  

    
      
          
            
  
Getting started with pyscal


The System class

System is the central class in pyscal. It is required for setting up calculations. We start by importing the class,


[1]:





from pyscal import System







And then create a system


[2]:





sys = System()







sys is a System object. But at this point, it is completely empty. We have to provide the system with the following information- * the simulation box dimensions * the positions of individual atoms.


Let us try to set up a small system, which is the bcc unitcell of lattice constant 1. The simulation box dimensions of such a unit cell would be [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]] where the first set correspond to the x axis, second to y axis and so on.

The unitcell has 2 atoms and their positions are [0,0,0] and [0.5, 0.5, 0.5].




[3]:





sys.box = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]







We can easily check if everything worked by getting the box dimensions


[4]:





sys.box








[4]:







[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]








The Atoms class

We start by importing the Atoms class


[5]:





from pyscal import Atoms







The next part is assigning the atoms. This can be done using the Atom class.

First, we prepare the positions


[8]:





adict = {"positions": [[0, 0, 0], [0.5, 0.5, 0.5]]}







Now we can create atoms


[9]:





atoms = Atoms(adict)







Atoms is python class and you can access the various keys.


[11]:





atoms.positions








[11]:







[[0, 0, 0], [0.5, 0.5, 0.5]]






It is also a dictionary and you can check the available keys.


[12]:





atoms.keys()








[12]:







dict_keys(['positions', 'ids', 'ghost', 'types', 'species', 'mask_1', 'mask_2', 'condition', 'head'])






There are more keys that were auto-generated, which is not important for us for the moment.

For more details about the Atoms class, please see further examples.



Combining System and Atoms

Now we can add the atoms to the System we created before.


[13]:





sys.atoms = atoms








We are all set! The System is ready for calculations. However, in most realistic simulation situations, we have many atoms and it can be difficult to set each of them

individually. In this situation we can read in input file directly. An example input file containing 500 atoms in a simulation box can be read in automatically. The file we use for this example is a file of the lammps-dump [https://lammps.sandia.gov/doc/dump.html] format. pyscal can also read in a number of other file formats. In principle, pyscal only needs the atom positions and simulation box size, so you can write a python function to process the input file, extract the details and
pass to pyscal.




[14]:





sys = System('conf.dump')








[16]:





sys.atoms.positions[:5]








[16]:







[[-5.66782, -6.06781, -6.58151],
 [-3.61832, -5.66888, -5.46712],
 [-0.947172, 10.3193, 11.3033],
 [-0.10301, -6.35752, -6.44787],
 [1.61271, -5.30872, -7.68795]]






Alternatively, it can be a two-step process


[17]:





sys = System()








[18]:





sys.read_inputfile('conf.dump')







The read_inputfile function supports a number of other options as well.


[19]:





sys.read_inputfile?













Signature:
sys.read_inputfile(
    filename,
    format='lammps-dump',
    compressed=False,
    customkeys=None,
)
Docstring:
Read input file that contains the information of system configuration.

Parameters
----------
filename : string
    name of the input file.

format : {'lammps-dump', 'poscar', 'ase', 'mdtraj'}
    format of the input file, in case of `ase` the ASE Atoms object

compressed : bool, optional
    If True, force to read a `gz` compressed format, default False.

customkeys : list
    A list containing names of headers of extra data that needs to be read in from the
    input file.

Returns
-------
None

Notes
-----
`format` keyword specifies the format of the input file. Currently only
a `lammps-dump` and `poscar` files are supported.  Additionaly, the widely
use Atomic Simulation environment (https://wiki.fysik.dtu.dk/ase/ase/ase.html).
mdtraj objects (http://mdtraj.org/1.9.3/) are also supported by using the keyword
`'mdtraj'` for format. Please note that triclinic boxes are not yet supported for
mdtraj format.
Atoms object can also be used directly. This function uses the
:func:`~pyscal.traj_process` module to process a file which is then assigned to system.

`compressed` keyword is not required if a file ends with `.gz` extension, it is
automatically treated as a compressed file.

Triclinic simulation boxes can also be read in.

If `custom_keys` are provided, this extra information is read in from input files if
available. This information is can be accessed directly as `self.atoms['customkey']`
File:      ~/miniconda3/envs/pyscal-test/lib/python3.10/site-packages/pyscal/core.py
Type:      method








[ ]:

















            

          

      

      

    

  

  
    
    

    Trajectory tests
    

    

    

    

    

    
 
  

    
      
          
            
  
Trajectory tests

Compare speed of processing LAMMPS trajectories using different modules


[10]:





import pyscal.core as pc
from pyscal.core import Trajectory
import pyscal.traj_process as ptp
import dask.bag as db
from ase.io import read
import matplotlib.pyplot as plt










Approach 1 - pyscal.traj_process

Use pyscal traj_process to split the file. Reading is done in a second step.


[3]:





%%timeit
files = ptp.split_trajectory("traj.light")













3.37 ms ± 397 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)








Advantages


	Quite fast


	Does not read the complete file into memory






Disadvantages


	Creates a number of small files into which the larger file is written


	Affects the hard disk space







Approach 2 - dask.bag

Reading the file in dask is a two step approach. First a lazy iterator is created, then the data is computed.


[4]:





bag = db.read_text("traj.light")








[5]:





%%timeit
x = bag.compute()













474 ms ± 44 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)







Advantages


	None






Disadvantages


	Super slow


	Reads the whole file at the same time







Approach 3 - ase.io.read


[6]:





%%timeit
d = read("traj.light", index=":", format="lammps-dump-text")













39 ms ± 953 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)







Advantages


	No temporary files created


	Reasonably fast






Disadvantages


	Reads the whole file at the same time


	Cannot write dump files







Approach 4 - Trajectory class from pyscal

The Trajectory class creates a object which gets basic information about the file without reading in the file at all. The reading is only done as when required.


[7]:





traj = Trajectory("traj.light")







Trajectory module supports indexing


[8]:





sl = traj[:]








[9]:





%%timeit
sl.to_file("dump")













2.62 ms ± 45.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)







Advantages


	Fastest approach


	At most only one snapshot is kept in memory


	No temporary files






Disadvantages


	Only supports lammps files





[15]:





times = [3.37, 474, 39, 2.62]
names = ["traj_process", "dask", "ase", "Trajectory"]
plt.bar(range(len(times)), times, log=True, tick_label=names)
plt.ylabel("Time (ms)")








[15]:







Text(0, 0.5, 'Time (ms)')











[image: ../_images/examples_prototype_files_19_1.png]




Test for a larger file. We will exclude dask as it is pretty slow.


[16]:





%%timeit
files = ptp.split_trajectory("traj.3.dat")













345 ms ± 9.98 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)







[17]:





%%timeit
d = read("traj.3.dat", index=":", format="lammps-dump-text")













5.3 s ± 59.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)







[19]:





traj = Trajectory("traj.3.dat")
sl = traj[:]








[22]:





%%timeit
sl.to_file("dump")













374 ms ± 2.67 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)







[23]:





times = [345, 5300, 374]
names = ["traj_process", "ase", "Trajectory"]
plt.bar(range(len(times)), times, log=True, tick_label=names)
plt.ylabel("Time (ms)")








[23]:







Text(0, 0.5, 'Time (ms)')











[image: ../_images/examples_prototype_files_25_1.png]




Trajectory performs quite well even for the larger file. Main advantage - it does not write until absolutely necessary!





            

          

      

      

    

  

  
    
    

    Methods to calculate neighbors of a particle
    

    

    

    

    
 
  

    
      
          
            
  
Methods to calculate neighbors of a particle

pyscal includes different methods to explore the local environment of a particle that rely on the calculation of nearest neighbors. Various approaches to compute the neighbors of particles are discussed here.


Fixed cutoff method

The most common method to calculate the nearest neighbors of an atom is using a cutoff radius. The neighborhood of an atom for calculation of Steinhardt’s parameters {cite}``Steinhardt1983`` is often carried out using this method. Commonly, a cutoff is selected as the first minimum of the radial distribution functions. Once a cutoff is selected, the neighbors of an atom are those that fall within this selected radius. The following code snippet will use the cutoff method to calculate neighbors.
In this example, conf.dump is assumed to be the input configuration of the system. A cutoff radius of 3 is assumed for calculation of neighbors.

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=3)







Adaptive cutoff methods

A fixed cutoff radius can introduce limitations to explore the local environment of the particle in some cases:


	At finite temperatures, when thermal fluctuations take place, the selection of a fixed cutoff may result in an inaccurate description of the local environment.


	If there is more than one structure present in the system, for example, bcc and fcc, the selection of cutoff such that it includes the first shell of both structures can be difficult.




In order to achieve a more accurate description of the local environment, various adaptive approaches have been proposed. Two of the methods implemented in the module are discussed below.


Solid angle based nearest neighbor algorithm (SANN)

SANN algorithm {cite}``VanMeel2012`` determines the cutoff radius by counting the solid angles around an atom and equating it to \(4\pi\). The algorithm solves the following equation iteratively.



\[R_i^{(m)} = \frac{\sum_{j=1}^m r_{i,j}}{m-2} < r_{i, m+1}\]




where \(i\) is the host atom, \(j\) are its neighbors with \(r_{ij}\) is the distance between atoms \(i\) and \(j\). \(R_i\) is the cutoff radius for each particle \(i\) which is found by increasing the neighbor of neighbors \(m\) iteratively. For a description of the algorithm and more details, please check the reference {cite}``VanMeel2012``. SANN algorithm can be used to find the neighbors by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='sann')





Since SANN algorithm involves sorting, a sufficiently large cutoff is used in the beginning to reduce the number entries to be sorted. This parameter is calculated by,



\[r_{initial} = \mathrm{threshold} \times \bigg(\frac{\mathrm{Simulation~box~volume}}{\mathrm{Number~of~particles}}\bigg)^{\frac{1}{3}}\]




a tunable threshold parameter can be set through function arguments.



Adaptive cutoff method

An adaptive cutoff specific for each atom can also be found using an algorithm similar to adaptive common neighbor analysis {cite}``Stukowski2012``. This adaptive cutoff is calculated by first making a list of all neighbor distances for each atom similar to SANN method. Once this list is available, then the cutoff is calculated from,



\[r_{cut}(i) = \mathrm{padding}\times \bigg(\frac{1}{\mathrm{nlimit}} \sum_{j=1}^{\mathrm{nlimit}} r_{ij} \bigg)\]




This method can be chosen by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')





The padding and nlimit parameters in the above equation can be tuned using the respective keywords.

Either of the adaptive method can be used to find neighbors, which can then be used to calculate Steinhardt’s parameters or their averaged version.




Voronoi tessellation

Voronoi tessellation [https://en.wikipedia.org/wiki/Voronoi_diagram] provides a completely parameter free geometric approach for calculation of neighbors. Voro++ [http://math.lbl.gov/voro++/] code is used for Voronoi tessellation. Neighbors can be calculated using this method by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')





Finding neighbors using Voronoi tessellation also calculates a weight for each neighbor. The weight of a neighbor \(j\) towards a host atom \(i\) is given by,



\[W_{ij} = \frac{A_{ij}}{\sum_{j=1}^N A_{ij}}\]




where \(A_{ij}\) is the area of Voronoi facet between atom \(i\) and \(j\), \(N\) are all the neighbors identified through Voronoi tessellation. This weight can be used later for calculation of weighted Steinhardt’s parameters. Optionally, it is possible to choose the exponent for this weight. Option voroexp is used to set this option. For example if voroexp=2, the weight would be calculated as,



\[W_{ij} = \frac{A_{ij}^2}{\sum_{j=1}^N A_{ij}^2}\]






References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt





            

          

      

      

    

  

  
    
    

    Steinhardt’s parameters
    

    

    

    

    
 
  

    
      
          
            
  
Steinhardt’s parameters

Steinhardt’s bond orientational order parameters {cite}``Steinhardt1983`` are a set of parameters based on spherical harmonics [https://en.wikipedia.org/wiki/Spherical_harmonics] to explore the local atomic environment. These parameters have been used extensively for various uses such as distinction of crystal structures, identification of solid and liquid atoms and identification of defects {cite}``Steinhardt1983``.

These parameters, which are rotationally and translationally invariant are defined by,



\[q_l (i) =  \Big(  \frac{4\pi}{2l+1}  \sum_{m=-l}^l | q_{lm}(i) |^2 \Big )^{\frac{1}{2}}\]




where,



\[q_{lm} (i) =  \frac{1}{N(i)} \sum_{j=1}^{N(i)} Y_{lm}(\pmb{r}_{ij})\]




in which \(Y_{lm}\) are the spherical harmonics and \(N(i)\) is the number of neighbours of particle \(i\), \(\pmb{r}_{ij}\) is the vector connecting particles \(i\) and \(j\), and \(l\) and \(m\) are both intergers with \(m \in [-l,+l]\). Various parameters have found specific uses, such as \(q_2\) and \(q_6\) for identification of crystallinity, \(q_6\) for identification of solidity, and \(q_4\) and \(q_6\) for distinction of crystal
structures {cite}``Mickel2013``. Commonly this method uses a cutoff radius to identify the neighbors of an atom. The cutoff can be chosen based on different methods available. Once the cutoff is chosen and neighbors are calculated, the calculation of Steinhardt’s parameters is straightforward.

sys.calculate_q([4, 6])
q = sys.get_qvals([4, 6])






Averaged Steinhardt’s parameters

At high temperatures, thermal vibrations affect the atomic positions. This in turn leads to overlapping distributions of \(q_l\) parameters, which makes the identification of crystal structures difficult. To address this problem, the averaged version \(\bar{q}_l\) of Steinhardt’s parameters was introduced by Lechner and Dellago {cite}``Lechner2008``. \(\bar{q}_l\) is given by,



\[\bar{q}_l (i) =  \Big(  \frac{4\pi}{2l+1}  \sum_{m=-l}^l \Big| \frac{1}{\tilde{N}(i)} \sum_{k=0}^{\tilde{N}(i)} q_{lm}(k) \Big|^2 \Big )^{\frac{1}{2}}\]




where the sum from \(k=0\) to \(\tilde{N}(i)\) is over all the neighbors and the particle itself. The averaged parameters takes into account the first neighbor shell and also information from the neighboring atoms and thus reduces the overlap between the distributions. Commonly \(\bar{q}_4\) and \(\bar{q}_6\) are used in identification of crystal structures. Averaged versions can be calculated by setting the keyword averaged=True as follows.

sys.calculate_q([4, 6], averaged=True)
q = sys.get_qvals([4, 6], averaged=True)







Voronoi weighted Steinhardt’s parameters

In order to improve the resolution of crystal structures Mickel et al {cite}``Mickel2013`` proposed weighting the contribution of each neighbor to the Steinhardt parameters by the ratio of the area of the Voronoi facet shared between the neighbor and host atom. The weighted parameters are given by,



\[q_{lm} (i) =  \frac{1}{N(i)} \sum_{j=1}^{N(i)} \frac{A_{ij}}{A} Y_{lm}(\pmb{r}_{ij})\]




where \(A_{ij}\) is the area of the Voronoi facet between atoms \(i\) and \(j\) and \(A\) is the sum of the face areas of atom \(i\). In pyscal, the area weights are already assigned during the neighbor calculation phase when the Voronoi method is used to calculate neighbors in the System.find_neighbors [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.core.System.find_neighbors]. The Voronoi weighted Steinhardt’s parameters can be calculated as follows,

sys.find_neighbors(method='voronoi')
sys.calculate_q([4, 6])
q = sys.get_qvals([4, 6])





The weighted Steinhardt’s parameters can also be averaged as described above. Once again, the keyword averaged=True can be used for this purpose.

sys.find_neighbors(method='voronoi')
sys.calculate_q([4, 6], averaged=True)
q = sys.get_qvals([4, 6], averaged=True)





It was also proposed that higher powers of the weight {cite}``Haeberle2019`` \(\frac{A_{ij}^{\alpha}}{A(\alpha)}\) where \(\alpha = 2, 3\) can also be used, where \(A(\alpha) = \sum_{j=1}^{N(i)} A_{ij}^{\alpha}\) The value of this can be set using the keyword voroexp during the neighbor calculation phase.

sys.find_neighbors(method='voronoi', voroexp=2)





If the value of voroexp is set to 0, the neighbors would be found using Voronoi method, but the calculated Steinhardt’s parameters will not be weighted.



References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt





            

          

      

      

    

  

  
    
    

    Classification of atoms as solid or liquid
    

    

    

    

    
 
  

    
      
          
            
  
Classification of atoms as solid or liquid

pyscal can also be used to distinguish solid and liquid atoms. The classification is based on Steinhardt’s parameters [https://pyscal.readthedocs.io/en/latest/steinhardtparameters.html], specifically \(q_6\). The method defines two neighboring atoms \(i\) and \(j\) as having solid bonds if a parameter \(s_{ij}\) {cite}``Auer2005``,



\[s_{ij} = \sum_{m=-6}^6 q_{6m}(i) q_{6m}^*(j) \geq \mathrm{threshold}\]




Additionally, a second order parameter is used to improve the distinction in solid-liquid boundaries {cite}``Bokeloh2014``. This is defined by the criteria,



\[\langle s_{ij} \rangle > \mathrm{avgthreshold}\]




If a particle has \(n\) number of bonds with \(s_{ij} \geq \mathrm{threshold}\) and the above condition is also satisfied, it is considered as a solid. The solid atoms can be clustered to find the largest solid cluster of atoms.

Finding solid atoms in liquid start with reading in a file and calculation of neighbors.

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=4)





Once again, there are various methods for finding neighbors. Please check here for details on neighbor calculation methods. Once the neighbors are calculated, solid atoms can be found directly by,

sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=True)





bonds set the number of minimum bonds a particle should have (as defined above), threshold and avgthreshold are the same quantities that appear in the equations above. Setting the keyword cluster to True returns the size of the largest solid cluster. It is also possible to check if each atom is solid or not.

atoms = sys.atom
solids = [atom.solid for atom in atoms]






References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt





            

          

      

      

    

  

  
    
    

    Disorder parameter
    

    

    

    

    
 
  

    
      
          
            
  
Disorder parameter

Kawasaki and Onuki {cite}``Kawasaki2011`` proposed a disorder variable based on Steinhardt’s order paramaters which can be used to distinguish between ordered and disordered structures

The disorder variable for an atom is defined as,



\[D_j = \frac{1}{n_b^j} \sum_{k \in neighbors } [S_{jj} + S_{kk} - 2S_{jk}]\]




where S is given by,



\[S_{jk} = \sum_{-l \leq m \leq l} q_{lm}^j (q_{lm}^k)^*\]




l = 6 was used in the original publication as it is a good indicator of crystallinity. However, l = 4 can also be used for treating bcc structures. An averaged disorder parameter for each atom can also be calculated in pyscal,



\[\bar{D}_j = \frac{1}{n_b^j} \sum_{k \in neighbors } D_j\]




In pyscal, disorder parameter can be calculated by the following code-block,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=0)
sys.calculate_q(6)
sys.calculate_disorder(averaged=True, q=6)





The value of q can be replaced with whichever is required from 2-12. The calculated values can be accessed by, Atom.disorder [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.disorder] and Atom.avg_disorder [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.avg_disorder] attributes.


References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt





            

          

      

      

    

  

  
    
    

    Angular parameters
    

    

    

    

    
 
  

    
      
          
            
  
Angular parameters


Angular criteria for identification of diamond structure

Angular parameter introduced by Uttormark et al {cite}``Uttormark1993`` is used to measure the tetrahedrality of local atomic structure. An atom belonging to diamond structure has four nearest neighbors which gives rise to six three body angles around the atom. The angular parameter \(A\) is then defined as,



\[A = \sum_{i=1}^6 (\cos(\theta_i)+\frac{1}{3})^2\]




An atom belonging to diamond structure would show the value of angular params close to 0. Angular parameter can be calculated in pyscal using the following method -

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')
sys.calculate_angularcriteria()





The calculated angular criteria value can be accessed for each atom using Atom.angular [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.angular].



\(\chi\) parameters for structural identification

\(\chi\) parameters introduced by Ackland and Jones {cite}``Ackland2006`` measures all local angles created by an atom with its neighbors and creates a histogram of these angles to produce vector which can be used to identify structures. After finding the neighbors of an atom, \(\cos \theta_{ijk}\) for atoms j and k which are neighbors of i is calculated for all combinations of i, j and k. The set of all calculated cosine values are then added to a histogram with the following bins -
[-1.0, -0.945, -0.915, -0.755, -0.705, -0.195, 0.195, 0.245, 0.795, 1.0]. Compared to \(\chi\) parameters from \(\chi_0\) to \(\chi_7\) in the associated publication, the vector calculated in pyscal contains values from \(\chi_0\) to \(\chi_8\) which is due to an additional \(\chi\) parameter which measures the number of neighbors between cosines -0.705 to -0.195. The \(\chi\) vector is characteristic of the local atomic environment and can be used to identify crystal
structures, details of which can be found in the publication[^2].

\(\chi\) parameters can be calculated in pyscal using,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')
sys.calculate_chiparams()





The calculated values for each atom can be accessed using Atom.chiparams [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.chiparams].



References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt





            

          

      

      

    

  

  
    
    

    Voronoi tessellation to identify local structures
    

    

    

    

    
 
  

    
      
          
            
  
Voronoi tessellation to identify local structures

Voronoi tessellation can be used for identification of local structure by counting the number of faces of the Voronoi polyhedra of an atom {cite}``Finney1970,Tanemura1977``. For each atom a vector \(\langle n_3~n_4~n_5~n_6 \rangle\) can be calculated where \(n_3\) is the number of Voronoi faces of the associated Voronoi polyhedron with three vertices, \(n_4\) is with four vertices and so on. Each perfect crystal structure such as a signature vector, for example, bcc can be identified
by \(\langle 0~6~0~8 \rangle\) and fcc can be identified using \(\langle 0~12~0~0 \rangle\). It is also a useful tool for identifying icosahedral structure which has the fingerprint \(\langle 0~0~12~0 \rangle\). In pyscal, the voronoi vector can be calculated using,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_vorovector()





The vector for each atom can be accessed using Atom.vorovector [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.vorovector]. Furthermore, the associated Voronoi volume of the polyhedron, which may be indicative of the local structure, is also automatically calculated when finding neighbors using System.find_neighbors [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.core.System.find_neighbors]. This value for each atom can be accessed by
Atom.volume [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.volume]. An averaged version of the volume, which is averaged over the neighbors of an atom can be accessed using Atom.avg_volume [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.avg_volume].


References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt





            

          

      

      

    

  

  
    
    

    Centrosymmetry parameter
    

    

    

    

    
 
  

    
      
          
            
  
Centrosymmetry parameter

Centrosymmetry parameter (CSP) was introduced by Kelchner et al. {cite}``Kelchner1998`` to identify defects in crystals. The parameter measures the loss of local symmetry. For an atom with \(N\) nearest neighbors, the parameter is given by,



\[\mathrm{CSP} = \sum_{i=1}^{N/2} \big | \textbf{r}_i + \textbf{r}_{i+N/2} \big |^2\]




\(\textbf{r}_i\) and \(\textbf{r}_{i+N/2}\) are vectors from the central atom to two opposite pairs of neighbors. There are two main methods to identify the opposite pairs of neighbors as described in this publication [https://arxiv.org/abs/2003.08879]. The first of the approaches is called Greedy Edge Selection (GES) {cite}``Stukowski2012`` and is implemented in LAMMPS [https://lammps.sandia.gov/] and Ovito [https://www.ovito.org/]. GES algorithm calculates a weight
\(w_{ij} = |\textbf{r}_i + \textbf{r}_j|\) for all combinations of neighbors around an atom and calculates CSP over the smallest \(N/2\) weights.

A centrosymmetry parameter calculation using GES algorithm can be carried out as follows-

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12)





nmax parameter specifies the number of nearest neighbors to be considered for the calculation of CSP. The second algorithm is called the Greedy Vertex Matching {cite}``Bulatov2006`` and is implemented in AtomEye [http://li.mit.edu/Archive/Graphics/A/] and Atomsk [https://atomsk.univ-lille.fr/]. This algorithm orders the neighbors atoms in order of increasing distance from the central atom. From this list, the closest neighbor is paired with its lowest weight partner and both atoms
removed from the list. This process is continued until no more atoms are remaining in the list. CSP calculation using this algorithm can be carried out by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12, algorithm = "gvm")






References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt





            

          

      

      

    

  

  
    
    

    Entropy - Enthalpy parameters
    

    

    

    

    
 
  

    
      
          
            
  
Entropy - Enthalpy parameters


Entropy fingerprint

The entropy parameter was introduced by Piaggi et al {cite}``Piaggi2017`` for identification of defects and distinction between solid and liquid. The entropy paramater \(s_s^i\) is defined as,



\[s_s^i = -2\pi\rho k_B \int_0^{r_m} [g_m^i(r)\ln g_m^i(r) - g_m^i(r) + 1] r^2 dr\]




where \(r_m\) is the upper bound of integration and \(g_m^i\) is radial distribution function centered on atom \(i\),



\[g_m^i(r) = \frac{1}{4\pi\rho r^2} \sum_j \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-(r-r_{ij})^2/(2\sigma^2)}\]




\(r_{ij}\) is the interatomic distance between atom \(i\) and its neighbors \(j\) and \(\sigma\) is a broadening parameter.

The averaged version of entropy parameters \(\bar{s}_s^i\) can be calculated in two ways, either using a simple averaging over the neighbors given by,



\[\bar{s}_s^i = \frac{\sum_j s_s^j + s_s^i}{N + 1}\]




or using a switching function as described below,



\[\bar{s}_s^i = \frac{\sum_j s_s^i f(r_{ij}) + s_s^i}{\sum_j f(r_{ij}) + 1}\]




\(f(r_{ij})\) is a switching parameter which depends on \(r_a\) which is the cutoff distance. The switching function shows a value of 1 for \(r_{ij} << r_a\) and 0 for \(r_{ij} >> r_a\). The switching function is given by,



\[f(r_{ij}) = \frac{1-(r_{ij}/r_a)^N}{1-(r_{ij}/r_a)^M}\]




Entropy parameters can be calculated in pyscal using the following code,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method="cutoff", cutoff=0)
lattice_constant=4.00
sys.calculate_entropy(1.4*lattice_constant, averaged=True)
atoms = sys.atoms
entropy = [atom.entropy for atom in atoms]
average_entropy = [atom.avg_entropy for atom in atoms]





The value of \(r_m\) is provided in units of lattice constant. Further parameters shown above, such as \(\sigma\) can be specified using the various keyword arguments. The above code does a simple averaging over neighbors. The switching function can be used by,

sys.calculate_entropy(1.4*lattice_constant, ra=0.9*lattice_constant, switching_function=True, averaged=True)





In pyscal, a slightly different version of \(s_s^i\) is calculated. This is given by,



\[s_s^i = -\rho \int_0^{r_m} [g_m^i(r)\ln g_m^i(r) - g_m^i(r) + 1] r^2 dr\]




The prefactor \(2\pi k_B\) is dropped in the entropy values calculated in pyscal.



References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt





            

          

      

      

    

  

  
    
    

    API reference
    

    

    

    

    
 
  

    
      
          
            
  
API reference

for pyscal API reference, see here [https://docs.pyscal.org].




            

          

      

      

    

  

  
    
    

    Downloads
    

    

    

    

    
 
  

    
      
          
            
  
Downloads

The source code is available in latest stable or release versions. We
recommend using the latest stable version for all updated features.


Source code


	latest stable version of pyscal
(tar.gz) [https://github.com/srmnitc/pyscal/archive/master.zip]


	release version (zip) [https://doi.org/10.5281/zenodo.3522376]






Documentation


	PDF
version [https://readthedocs.org/projects/pyscal/downloads/pdf/latest/]


	Epub
version [https://readthedocs.org/projects/pyscal/downloads/epub/latest/]






Publication


	Publication [https://joss.theoj.org/papers/10.21105/joss.01824]


	citation [https://joss.theoj.org/papers/10.21105/joss.01824#]








            

          

      

      

    

  

  
    
    

    Getting started
    

    

    

    

    
 
  

    
      
          
            
  
Getting started


Trying pyscal

You can try some examples provided with pyscal using
Binder [https://mybinder.org/] without installing the package. Please
use this
link [https://mybinder.org/v2/gh/srmnitc/pyscal/master?urlpath=lab] to
try the package.



Installation


Supported operating systems

pyscal can be installed on Linux, Mac OS and Windows based systems.



Installation using conda [https://anaconda.org]

pyscal can be installed directly using
Conda [https://docs.conda.io/en/latest/] from the conda-forge
channel [https://conda-forge.org/] by the following statement-

conda install -c conda-forge pyscal





This is the recommended way to install if you have an
Anaconda [https://www.anaconda.com/] distribution.

The above command installs the latest release
version [https://github.com/pyscal/pyscal/releases] of pyscal and works
on all three operating systems.


Warning

pyscal is no longer maintained for Python 2. Although quick installation method might work for Python 2, all features may not work as expected.





Installation using pip

pyscal is not available on pip directly. However pyscal can be installed
using pip by

pip install pybind11
pip install git+https://github.com/pyscal/pyscal







Installation from the repository

pyscal can be built from the repository by-

git clone https://github.com/pyscal/pyscal.git
pip install pybind11
cd pyscal
python setup.py install --user







Using a conda environment

pyscal can also be installed in a conda environment, making it easier to
manage dependencies. A python3 Conda environment can be created by,

conda create -n myenv python=3





Once created, the environment can be activated using,

conda activate myenv





In case C++11 is not available, these can be installed using,

(myenv) conda install -c anaconda gcc





Now the pyscal repository can be cloned and the module can be installed.
Python dependencies are installed automatically.

(myenv) git clone https://github.com/pyscal/pyscal.git
(myenv) conda install -c conda-forge pybind11
(myenv) cd pyscal
(myenv) python setup.py install






Tip

A good guide on managing Conda environments is available
here [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html].





Dependencies

Dependencies for the C++ part


	pybind11 [https://github.com/pybind/pybind11]


	C++ 11




Dependencies for the python part


	numpy [https://numpy.org/]


	ase [https://wiki.fysik.dtu.dk/ase/]


	plotly [https://plotly.com/]


	ipywidgets [https://ipywidgets.readthedocs.io/en/latest/]




Optional dependencies


	pytest [https://docs.pytest.org/en/latest/]


	matplotlib [https://matplotlib.org/]


	LAMMPS [https://www.lammps.org/]






Tests

In order to see if the installation worked, the following commands can
be tried-

import pyscal.core as pc
pc.test()





The above code does some minimal tests and gives a value of True if
pyscal was installed successfully. However, pyscal also contains
automated tests which use the
pytest [https://docs.pytest.org/en/latest/] python library, which can
be installed by pip install pytest. The tests can be run by executing
the command pytest tests/ from the main code directory.

It is good idea to run the tests to check if everything is installed
properly.






            

          

      

      

    

  

  
    
    

    News and updates
    

    

    

    

    
 
  

    
      
          
            
  
News and updates


	November 21, 2019

pyscal is selected as the E-CAM module of the month. See the news here [https://www.e-cam2020.eu/pyscal-a-python-module-for-structural-analysis-of-atomic-environments/].


	November 1, 2019

pyscal paper is accepted in the Journal of Open Source Software. See the paper here [https://joss.theoj.org/papers/10.21105/joss.01824].


	October 17, 2019

Publication for pyscal submitted to the Journal of Open Source Software.
See the review here [https://github.com/openjournals/joss-reviews/issues/1824].


	July 12, 2019

Version 1.0.0 [https://github.com/srmnitc/pyscal/releases/tag/v1.0.0]
of pyscal is released.







            

          

      

      

    

  

  
    
    

    Projects using pyscal
    

    

    

    

    
 
  

    
      
          
            
  
Projects using pyscal


	calphy : A Python library and command line interface for automated free energy calculations.


	pyiron : pyiron - an integrated development environment (IDE) for computational materials science.


	Automated melting temperature calculation using Pyiron [https://github.com/pyiron/pyiron_meltingpoint]  : A fully automated approach to determine the melting temperature of crystalline materials.


	Pyscal interactive session in Ab initio Description of Iron and Steel (ADIS2020): Diffusion and Precipitation workshop [https://github.com/pyiron/ADIS-workshop-2020]







            

          

      

      

    

  

  
    
    

    Publications using pyscal
    

    

    

    

    
 
  

    
      
          
            
  
Publications using pyscal


	Laurens, Gaétan, Jacek Goniakowski, and Julien Lam. “Non-Classical Nucleation of Zinc Oxide from a Physically-Motivated Machine-Learning  Approach.” ArXiv:2108.10601 [Cond-Mat, Physics:Physics], August 24, 2021. [http://arxiv.org/abs/2108.10601]


	Menon, Sarath, Yury Lysogorskiy, Jutta Rogal, and Ralf Drautz. “Automated Free Energy Calculation from Atomistic Simulations.” ArXiv:2107.08980 [Cond-Mat], July 19, 2021. [http://arxiv.org/abs/2107.08980].


	Quentino, J. V., and P. A. F. P. Moreira. “Determining Neighborhood Phases in Hard-Sphere Systems Using Machine Learning.” The European Physical Journal B 94, no. 6 (June 2021): 130. [https://doi.org/10.1140/epjb/s10051-021-00140-9].


	Casillas-Trujillo, Luis, Ulf Jansson, Martin Sahlberg, Gustav Ek, Magnus M. Nygård, Magnus H. Sørby, Bjørn C. Hauback, Igor A. Abrikosov, and Björn Alling. “Interstitial Carbon in Bcc HfNbTiVZr High-Entropy Alloy from First Principles.” Physical Review Materials 4, no. 12 (December 2, 2020): 123601. [https://doi.org/10.1103/PhysRevMaterials.4.123601].


	Menon, Sarath, Grisell Díaz Leines, Ralf Drautz, and Jutta Rogal. “Role of Pre-Ordered Liquid in the Selection Mechanism of Crystal Polymorphs during Nucleation.” The Journal of Chemical Physics 153, no. 10 (September 14, 2020): 104508. [https://doi.org/10.1063/5.0017575].


	Gao, Xueyun, Haiyan Wang, Lei Xing, Cainv Ma, and Huiping Ren. “Evolution of Local Atomic Structure during Solidification of Fe-RE (RE=La, Ce) Alloy.” Journal of Non-Crystalline Solids 542 (August 2020): 120109. [https://doi.org/10.1016/j.jnoncrysol.2020.120109].


	Menon, Sarath, Grisell Leines, and Jutta Rogal. “Pyscal: A Python Module for Structural Analysis of Atomic Environments.” Journal of Open Source Software 4, no. 43 (November 1, 2019): 1824. [https://doi.org/10.21105/joss.01824].







            

          

      

      

    

  
pyscal_logo1.png
¥ pyscal





pyscal_logo2.png
X" pyscal





_images/examples_prototype_files_19_1.png
107

Time (ms)

traj_process.

Taiectory,





img_time