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pyscal is a python module for the calculation of local atomic structural environments including Steinhardt’s bond
orientational order parameters during post-processing of atomistic simulation data. The core functionality of pyscal
is written in C++ with python wrappers using pybind11 which allows for fast calculations with possibilities for easy
expansion in python.

Steinhardt’s order parameters are widely used for identification of crystal structures. They are also used to identify if
an atom is solid or liquid. pyscal is inspired by BondOrderAnalysis code, but has since incorporated many additions
and modifications. pyscal module includes the following functionality-

CONTENTS 1

https://dev.azure.com/sarathrmenon/pyscal/_build/latest?definitionId=1&branchName=master
https://codecov.io/gh/srmnitc/pyscal
https://mybinder.org/v2/gh/srmnitc/pybop/master?filepath=examples%2F
https://anaconda.org/conda-forge/pyscal
https://conda.anaconda.org/pyscal
https://joss.theoj.org/papers/168eca482155601dc517523899527a4e
https://anaconda.org/conda-forge/pyscal
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.784
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.784
https://pybind11.readthedocs.io/en/stable/intro.html
https://aip.scitation.org/doi/full/10.1063/1.4774084
https://link.springer.com/chapter/10.1007/b99429
https://homepage.univie.ac.at/wolfgang.lechner/bondorderparameter.html


pyscal Documentation, Release 2.10.14

2 CONTENTS



CHAPTER

ONE

HIGHLIGHTS

• fast and efficient calculations using C++ and expansion using python.

• calculation of Steinhardt’s order parameters and their averaged version and disorder parameters.

• links with Voro++ code, for calculation of Steinhardt parameters weighted using face area of Voronoi polyhedra.

• classification of atoms as solid or liquid.

• clustering of particles based on a user defined property.

• methods for calculating radial distribution function, voronoi volume of particles, number of vertices and face
area of voronoi polyhedra and coordination number.

• calculation of angular parameters such as for identification of diamond structure and Ackland-Jones angular
parameters.

• Centrosymmetry parameter for identification of defects.

• Adaptive common neighbor analysis for identification of crystal structures.
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CHAPTER

TWO

DOCUMENTATION

2.1 Download and Install

2.1.1 Downloads

The source code is available in latest stable or release versions. We recommend using the latest stable version for all
updated features.

Source code

• latest stable version of pyscal (tar.gz)

• release version (zip)

Documentation

• PDF version

• Epub version

Publication

• Publication

• citation

2.1.2 Getting started

Trying pyscal

You can try some examples provided with pyscal using Binder without installing the package. Please use this link to
try the package.
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Installation

Supported operating systems

pyscal can be installed on Linux, Mac OS and Windows based systems.

Installation using conda

pyscal can be installed directly using Conda from the conda-forge channel by the following statement-

conda install -c conda-forge pyscal

This is the recommended way to install if you have an Anaconda distribution.

The above command installs the latest release version of pyscal and works on all three operating systems.

pyscal is no longer maintained for Python 2. Although quick installation method might␣
→˓work for Python 2, all features may not work as expected.

Quick installation

pyscal can be installed using the following steps-

• Download an archive of the pyscal library from here.

• Extract the downloaded version. From the extracted folder, run, python setup.py install --user

Pyscal can be installed system-wide using `python setup.py install`.

Installation using pip

pyscal is not available on pip directly. However pyscal can be installed using pip by

pip install git+https://github.com/srmnitc/pyscal

Installation from the repository

pyscal can be built from the repository by-

git clone https://github.com/srmnitc/pyscal.git
cd pyscal
python setup.py install --user

6 Chapter 2. Documentation
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Using a conda environment

pyscal can also be installed in a conda environment, making it easier to manage dependencies. A python3 Conda
environment can be created by,

conda create -n myenv python=3

Once created, the environment can be activated using,

conda activate myenv

In case Cmake and C++11 are not available, these can be installed using,

(myenv) conda install -c anaconda gcc
(myenv) conda install -c anaconda cmake

Now the pyscal repository can be cloned and the module can be installed. Python dependencies are installed automat-
ically.

(myenv) git clone https://github.com/srmnitc/pyscal.git
(myenv) cd pyscal
(myenv) python setup.py install

A good guide on managing Conda environments is available
[here](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-
→˓environments.html).

Dependencies

Dependencies for the C++ part

• Cmake

• C++ 11

Dependencies for the python part

• numpy

• ase

Optional dependencies

• pytest

• matplotlib

2.1. Download and Install 7
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Tests

In order to see if the installation worked, the following commands can be tried-

import pyscal.core as pc
pc.test()

The above code does some minimal tests and gives a value of True if pyscal was installed successfully. However, pyscal
also contains automated tests which use the pytest python library, which can be installed by pip install pytest.
The tests can be run by executing the command pytest tests/ from the main code directory.

It is good idea to run the tests to check if everything is installed properly.

2.2 News and updates

• November 21, 2019 pyscal is selected as the E-CAM module of the month. See the news here.

• November 1, 2019 pyscal paper is accepted in the Journal of Open Source Software. See the paper here.

• October 17, 2019 Publication for pyscal submitted to the Journal of Open Source Software. See the review here.

• July 12, 2019 Version 1.0.0 of pyscal is released.

2.3 Methods and examples

2.3.1 Methods

Methods to calculate neighbors of a particle

pyscal includes different methods to explore the local environment of a particle that rely on the calculation of nearest
neighbors. Various approaches to compute the neighbors of particles are discussed here.

Fixed cutoff method

The most common method to calculate the nearest neighbors of an atom is using a cutoff radius. The neighborhood
of an atom for calculation of Steinhardt’s parameters {cite}``Steinhardt1983`` is often carried out using this method.
Commonly, a cutoff is selected as the first minimum of the radial distribution functions. Once a cutoff is selected,
the neighbors of an atom are those that fall within this selected radius. The following code snippet will use the cutoff
method to calculate neighbors. In this example, conf.dump is assumed to be the input configuration of the system. A
cutoff radius of 3 is assumed for calculation of neighbors.

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=3)
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Adaptive cutoff methods

A fixed cutoff radius can introduce limitations to explore the local environment of the particle in some cases:

• At finite temperatures, when thermal fluctuations take place, the selection of a fixed cutoff may result in an
inaccurate description of the local environment.

• If there is more than one structure present in the system, for example, bcc and fcc, the selection of cutoff such
that it includes the first shell of both structures can be difficult.

In order to achieve a more accurate description of the local environment, various adaptive approaches have been pro-
posed. Two of the methods implemented in the module are discussed below.

Solid angle based nearest neighbor algorithm (SANN)

SANN algorithm {cite}``VanMeel2012`` determines the cutoff radius by counting the solid angles around an atom and
equating it to 4𝜋. The algorithm solves the following equation iteratively.

𝑅
(𝑚)
𝑖 =

∑︀𝑚
𝑗=1 𝑟𝑖,𝑗

𝑚− 2
< 𝑟𝑖,𝑚+1

where 𝑖 is the host atom, 𝑗 are its neighbors with 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗. 𝑅𝑖 is the cutoff radius for
each particle 𝑖 which is found by increasing the neighbor of neighbors 𝑚 iteratively. For a description of the algorithm
and more details, please check the reference {cite}``VanMeel2012``. SANN algorithm can be used to find the neighbors
by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='sann')

Since SANN algorithm involves sorting, a sufficiently large cutoff is used in the beginning to reduce the number entries
to be sorted. This parameter is calculated by,

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = threshold ×
(︂

Simulation box volume

Number of particles

)︂ 1
3

a tunable threshold parameter can be set through function arguments.

Adaptive cutoff method

An adaptive cutoff specific for each atom can also be found using an algorithm similar to adaptive common neighbor
analysis {cite}``Stukowski2012``. This adaptive cutoff is calculated by first making a list of all neighbor distances for
each atom similar to SANN method. Once this list is available, then the cutoff is calculated from,

𝑟𝑐𝑢𝑡(𝑖) = padding ×
(︂

1

nlimit

nlimit∑︁
𝑗=1

𝑟𝑖𝑗

)︂

This method can be chosen by,

2.3. Methods and examples 9
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import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')

The padding and nlimit parameters in the above equation can be tuned using the respective keywords.

Either of the adaptive method can be used to find neighbors, which can then be used to calculate Steinhardt’s parameters
or their averaged version.

Voronoi tessellation

Voronoi tessellation provides a completely parameter free geometric approach for calculation of neighbors. Voro++
code is used for Voronoi tessellation. Neighbors can be calculated using this method by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')

Finding neighbors using Voronoi tessellation also calculates a weight for each neighbor. The weight of a neighbor 𝑗
towards a host atom 𝑖 is given by,

𝑊𝑖𝑗 =
𝐴𝑖𝑗∑︀𝑁
𝑗=1 𝐴𝑖𝑗

where 𝐴𝑖𝑗 is the area of Voronoi facet between atom 𝑖 and 𝑗, 𝑁 are all the neighbors identified through Voronoi
tessellation. This weight can be used later for calculation of weighted Steinhardt’s parameters. Optionally, it is possible
to choose the exponent for this weight. Option voroexp is used to set this option. For example if voroexp=2, the
weight would be calculated as,

𝑊𝑖𝑗 =
𝐴2

𝑖𝑗∑︀𝑁
𝑗=1 𝐴

2
𝑖𝑗

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

Steinhardt’s parameters

Steinhardt’s bond orientational order parameters {cite}``Steinhardt1983`` are a set of parameters based on spheri-
cal harmonics to explore the local atomic environment. These parameters have been used extensively for various
uses such as distinction of crystal structures, identification of solid and liquid atoms and identification of defects
{cite}``Steinhardt1983``.

These parameters, which are rotationally and translationally invariant are defined by,
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𝑞𝑙(𝑖) =
(︁ 4𝜋

2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

|𝑞𝑙𝑚(𝑖)|2
)︁ 1

2

where,

𝑞𝑙𝑚(𝑖) =
1

𝑁(𝑖)

𝑁(𝑖)∑︁
𝑗=1

𝑌𝑙𝑚(𝑟𝑟𝑟𝑖𝑗)

in which 𝑌𝑙𝑚 are the spherical harmonics and𝑁(𝑖) is the number of neighbours of particle 𝑖, 𝑟𝑟𝑟𝑖𝑗 is the vector connecting
particles 𝑖 and 𝑗, and 𝑙 and 𝑚 are both intergers with 𝑚 ∈ [−𝑙,+𝑙]. Various parameters have found specific uses, such
as 𝑞2 and 𝑞6 for identification of crystallinity, 𝑞6 for identification of solidity, and 𝑞4 and 𝑞6 for distinction of crystal
structures {cite}``Mickel2013``. Commonly this method uses a cutoff radius to identify the neighbors of an atom. The
cutoff can be chosen based on different methods available. Once the cutoff is chosen and neighbors are calculated, the
calculation of Steinhardt’s parameters is straightforward.

sys.calculate_q([4, 6])
q = sys.get_qvals([4, 6])

Averaged Steinhardt’s parameters

At high temperatures, thermal vibrations affect the atomic positions. This in turn leads to overlapping distributions
of 𝑞𝑙 parameters, which makes the identification of crystal structures difficult. To address this problem, the averaged
version 𝑞𝑙 of Steinhardt’s parameters was introduced by Lechner and Dellago {cite}``Lechner2008``. 𝑞𝑙 is given by,

𝑞𝑙(𝑖) =
(︁ 4𝜋

2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

⃒⃒⃒ 1

�̃�(𝑖)

�̃�(𝑖)∑︁
𝑘=0

𝑞𝑙𝑚(𝑘)
⃒⃒⃒2)︁ 1

2

where the sum from 𝑘 = 0 to �̃�(𝑖) is over all the neighbors and the particle itself. The averaged parameters takes
into account the first neighbor shell and also information from the neighboring atoms and thus reduces the overlap
between the distributions. Commonly 𝑞4 and 𝑞6 are used in identification of crystal structures. Averaged versions can
be calculated by setting the keyword averaged=True as follows.

sys.calculate_q([4, 6], averaged=True)
q = sys.get_qvals([4, 6], averaged=True)

Voronoi weighted Steinhardt’s parameters

In order to improve the resolution of crystal structures Mickel et al {cite}``Mickel2013`` proposed weighting the con-
tribution of each neighbor to the Steinhardt parameters by the ratio of the area of the Voronoi facet shared between the
neighbor and host atom. The weighted parameters are given by,

𝑞𝑙𝑚(𝑖) =
1

𝑁(𝑖)

𝑁(𝑖)∑︁
𝑗=1

𝐴𝑖𝑗

𝐴
𝑌𝑙𝑚(𝑟𝑟𝑟𝑖𝑗)

2.3. Methods and examples 11
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where 𝐴𝑖𝑗 is the area of the Voronoi facet between atoms 𝑖 and 𝑗 and 𝐴 is the sum of the face areas of atom 𝑖. In
pyscal, the area weights are already assigned during the neighbor calculation phase when the Voronoi method is used
to calculate neighbors in the System.find_neighbors. The Voronoi weighted Steinhardt’s parameters can be calculated
as follows,

sys.find_neighbors(method='voronoi')
sys.calculate_q([4, 6])
q = sys.get_qvals([4, 6])

The weighted Steinhardt’s parameters can also be averaged as described above. Once again, the keyword
averaged=True can be used for this purpose.

sys.find_neighbors(method='voronoi')
sys.calculate_q([4, 6], averaged=True)
q = sys.get_qvals([4, 6], averaged=True)

It was also proposed that higher powers of the weight {cite}``Haeberle2019`` 𝐴𝛼
𝑖𝑗

𝐴(𝛼) where 𝛼 = 2, 3 can also be used,
where 𝐴(𝛼) =

∑︀𝑁(𝑖)
𝑗=1 𝐴𝛼

𝑖𝑗 The value of this can be set using the keyword voroexp during the neighbor calculation
phase.

sys.find_neighbors(method='voronoi', voroexp=2)

If the value of voroexp is set to 0, the neighbors would be found using Voronoi method, but the calculated Steinhardt’s
parameters will not be weighted.

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

Classification of atoms as solid or liquid

pyscal can also be used to distinguish solid and liquid atoms. The classification is based on Steinhardt’s parame-
ters, specifically 𝑞6. The method defines two neighboring atoms 𝑖 and 𝑗 as having solid bonds if a parameter 𝑠𝑖𝑗
{cite}``Auer2005``,

𝑠𝑖𝑗 =

6∑︁
𝑚=−6

𝑞6𝑚(𝑖)𝑞*6𝑚(𝑗) ≥ threshold

Additionally, a second order parameter is used to improve the distinction in solid-liquid boundaries
{cite}``Bokeloh2014``. This is defined by the criteria,

⟨𝑠𝑖𝑗⟩ > avgthreshold

If a particle has 𝑛 number of bonds with 𝑠𝑖𝑗 ≥ threshold and the above condition is also satisfied, it is considered as
a solid. The solid atoms can be clustered to find the largest solid cluster of atoms.

Finding solid atoms in liquid start with reading in a file and calculation of neighbors.
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import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=4)

Once again, there are various methods for finding neighbors. Please check here for details on neighbor calculation
methods. Once the neighbors are calculated, solid atoms can be found directly by,

sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=True)

bonds set the number of minimum bonds a particle should have (as defined above), threshold and avgthreshold
are the same quantities that appear in the equations above. Setting the keyword cluster to True returns the size of the
largest solid cluster. It is also possible to check if each atom is solid or not.

atoms = sys.atom
solids = [atom.solid for atom in atoms]

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

Disorder parameter

Kawasaki and Onuki {cite}``Kawasaki2011`` proposed a disorder variable based on Steinhardt’s order paramaters
which can be used to distinguish between ordered and disordered structures

The disorder variable for an atom is defined as,

𝐷𝑗 =
1

𝑛𝑗
𝑏

∑︁
𝑘∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

[𝑆𝑗𝑗 + 𝑆𝑘𝑘 − 2𝑆𝑗𝑘]

where S is given by,

𝑆𝑗𝑘 =
∑︁

−𝑙≤𝑚≤𝑙

𝑞𝑗𝑙𝑚(𝑞𝑘𝑙𝑚)*

l = 6 was used in the original publication as it is a good indicator of crystallinity. However, l = 4 can also be used for
treating bcc structures. An averaged disorder parameter for each atom can also be calculated in pyscal,

�̄�𝑗 =
1

𝑛𝑗
𝑏

∑︁
𝑘∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝐷𝑗

In pyscal, disorder parameter can be calculated by the following code-block,

2.3. Methods and examples 13
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import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=0)
sys.calculate_q(6)
sys.calculate_disorder(averaged=True, q=6)

The value of q can be replaced with whichever is required from 2-12. The calculated values can be accessed by,
Atom.disorder and Atom.avg_disorder attributes.

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

Angular parameters

Angular criteria for identification of diamond structure

Angular parameter introduced by Uttormark et al {cite}``Uttormark1993`` is used to measure the tetrahedrality of local
atomic structure. An atom belonging to diamond structure has four nearest neighbors which gives rise to six three body
angles around the atom. The angular parameter 𝐴 is then defined as,

𝐴 =

6∑︁
𝑖=1

(cos(𝜃𝑖) +
1

3
)2

An atom belonging to diamond structure would show the value of angular params close to 0. Angular parameter can
be calculated in pyscal using the following method -

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')
sys.calculate_angularcriteria()

The calculated angular criteria value can be accessed for each atom using Atom.angular.

𝜒 parameters for structural identification

𝜒 parameters introduced by Ackland and Jones {cite}``Ackland2006`` measures all local angles created by an atom with
its neighbors and creates a histogram of these angles to produce vector which can be used to identify structures. After
finding the neighbors of an atom, cos 𝜃𝑖𝑗𝑘 for atoms j and k which are neighbors of i is calculated for all combinations
of i, j and k. The set of all calculated cosine values are then added to a histogram with the following bins - [-1.0, -0.945,
-0.915, -0.755, -0.705, -0.195, 0.195, 0.245, 0.795, 1.0]. Compared to 𝜒 parameters from 𝜒0 to 𝜒7 in the associated
publication, the vector calculated in pyscal contains values from 𝜒0 to 𝜒8 which is due to an additional 𝜒 parameter
which measures the number of neighbors between cosines -0.705 to -0.195. The 𝜒 vector is characteristic of the local
atomic environment and can be used to identify crystal structures, details of which can be found in the publication[^2].

𝜒 parameters can be calculated in pyscal using,
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import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')
sys.calculate_chiparams()

The calculated values for each atom can be accessed using Atom.chiparams.

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

Voronoi tessellation to identify local structures

Voronoi tessellation can be used for identification of local structure by counting the number of faces of the Voronoi
polyhedra of an atom {cite}``Finney1970,Tanemura1977``. For each atom a vector ⟨𝑛3 𝑛4 𝑛5 𝑛6⟩ can be calculated
where 𝑛3 is the number of Voronoi faces of the associated Voronoi polyhedron with three vertices, 𝑛4 is with four
vertices and so on. Each perfect crystal structure such as a signature vector, for example, bcc can be identified by
⟨0 6 0 8⟩ and fcc can be identified using ⟨0 12 0 0⟩. It is also a useful tool for identifying icosahedral structure which
has the fingerprint ⟨0 0 12 0⟩. In pyscal, the voronoi vector can be calculated using,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_vorovector()

The vector for each atom can be accessed using Atom.vorovector. Furthermore, the associated Voronoi volume of the
polyhedron, which may be indicative of the local structure, is also automatically calculated when finding neighbors
using System.find_neighbors. This value for each atom can be accessed by Atom.volume. An averaged version of the
volume, which is averaged over the neighbors of an atom can be accessed using Atom.avg_volume.

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

Centrosymmetry parameter

Centrosymmetry parameter (CSP) was introduced by Kelchner et al. {cite}``Kelchner1998`` to identify defects in
crystals. The parameter measures the loss of local symmetry. For an atom with 𝑁 nearest neighbors, the parameter is
given by,

CSP =

𝑁/2∑︁
𝑖=1

⃒⃒
r𝑖 + r𝑖+𝑁/2

⃒⃒2
r𝑖 and r𝑖+𝑁/2 are vectors from the central atom to two opposite pairs of neighbors. There are two main methods to
identify the opposite pairs of neighbors as described in this publication. The first of the approaches is called Greedy
Edge Selection (GES) {cite}``Stukowski2012`` and is implemented in LAMMPS and Ovito. GES algorithm calculates
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a weight 𝑤𝑖𝑗 = |r𝑖 + r𝑗 | for all combinations of neighbors around an atom and calculates CSP over the smallest 𝑁/2
weights.

A centrosymmetry parameter calculation using GES algorithm can be carried out as follows-

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12)

nmax parameter specifies the number of nearest neighbors to be considered for the calculation of CSP. The second
algorithm is called the Greedy Vertex Matching {cite}``Bulatov2006`` and is implemented in AtomEye and Atomsk.
This algorithm orders the neighbors atoms in order of increasing distance from the central atom. From this list, the
closest neighbor is paired with its lowest weight partner and both atoms removed from the list. This process is continued
until no more atoms are remaining in the list. CSP calculation using this algorithm can be carried out by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12, algorithm = "gvm")

References
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Entropy - Enthalpy parameters

Entropy fingerprint

The entropy parameter was introduced by Piaggi et al {cite}``Piaggi2017`` for identification of defects and distinction
between solid and liquid. The entropy paramater 𝑠𝑖𝑠 is defined as,

𝑠𝑖𝑠 = −2𝜋𝜌𝑘𝐵

∫︁ 𝑟𝑚

0

[𝑔𝑖𝑚(𝑟) ln 𝑔𝑖𝑚(𝑟) − 𝑔𝑖𝑚(𝑟) + 1]𝑟2𝑑𝑟

where 𝑟𝑚 is the upper bound of integration and 𝑔𝑖𝑚 is radial distribution function centered on atom 𝑖,

𝑔𝑖𝑚(𝑟) =
1

4𝜋𝜌𝑟2

∑︁
𝑗

1√
2𝜋𝜎2

exp−(𝑟 − 𝑟𝑖𝑗)
2/(2𝜎2)

𝑟𝑖𝑗 is the interatomic distance between atom 𝑖 and its neighbors 𝑗 and 𝜎 is a broadening parameter.

The averaged version of entropy parameters 𝑠𝑖𝑠 can be calculated in two ways, either using a simple averaging over the
neighbors given by,

𝑠𝑖𝑠 =

∑︀
𝑗 𝑠

𝑗
𝑠 + 𝑠𝑖𝑠

𝑁 + 1
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or using a switching function as described below,

𝑠𝑖𝑠 =

∑︀
𝑗 𝑠

𝑖
𝑠𝑓(𝑟𝑖𝑗) + 𝑠𝑖𝑠∑︀

𝑗 𝑓(𝑟𝑖𝑗) + 1

𝑓(𝑟𝑖𝑗) is a switching parameter which depends on 𝑟𝑎 which is the cutoff distance. The switching function shows a
value of 1 for 𝑟𝑖𝑗 << 𝑟𝑎 and 0 for 𝑟𝑖𝑗 >> 𝑟𝑎. The switching function is given by,

𝑓(𝑟𝑖𝑗) =
1 − (𝑟𝑖𝑗/𝑟𝑎)𝑁

1 − (𝑟𝑖𝑗/𝑟𝑎)𝑀

Entropy parameters can be calculated in pyscal using the following code,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method="cutoff", cutoff=0)
lattice_constant=4.00
sys.calculate_entropy(1.4*lattice_constant, averaged=True)
atoms = sys.atoms
entropy = [atom.entropy for atom in atoms]
average_entropy = [atom.avg_entropy for atom in atoms]

The value of 𝑟𝑚 is provided in units of lattice constant. Further parameters shown above, such as 𝜎 can be specified
using the various keyword arguments. The above code does a simple averaging over neighbors. The switching function
can be used by,

sys.calculate_entropy(1.4*lattice_constant, ra=0.9*lattice_constant, switching_
→˓function=True, averaged=True)

In pyscal, a slightly different version of 𝑠𝑖𝑠 is calculated. This is given by,

𝑠𝑖𝑠 = −𝜌

∫︁ 𝑟𝑚

0

[𝑔𝑖𝑚(𝑟) ln 𝑔𝑖𝑚(𝑟) − 𝑔𝑖𝑚(𝑟) + 1]𝑟2𝑑𝑟

The prefactor 2𝜋𝑘𝐵 is dropped in the entropy values calculated in pyscal.

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt
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2.3.2 Examples

Getting started with pyscal

This example illustrates basic functionality of pyscal python library by setting up a system and the atoms.

[1]: import pyscal.core as pc
import numpy as np

The System class

System is the basic class of pyscal and is required to be setup in order to perform any calculations. It can be set up as-

[2]: sys = pc.System()

sys is a System object. But at this point, it is completely empty. We have to provide the system with the following
information- * the simulation box dimensions * the positions of individual atoms.

Let us try to set up a small system, which is the bcc unitcell of lattice constant 1. The simulation box dimensions of
such a unit cell would be [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]] where the first set correspond to the x axis, second to y axis
and so on.
The unitcell has 2 atoms and their positions are [0,0,0] and [0.5, 0.5, 0.5].

[3]: sys.box = [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

We can easily check if everything worked by getting the box dimensions

[4]: sys.box

[4]: [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

The Atom class

The next part is assigning the atoms. This can be done using the Atom class. Here, we will only look at the basic
properties of Atom class. For a more detailed description, check the examples.
Now let us create two atoms.

[5]: atom1 = pc.Atom()
atom2 = pc.Atom()

Now two empty atom objects are created. The basic poperties of an atom are its positions and id. There are various
other properties which can be set here. A detailed description can be found here.

[6]: atom1.pos = [0., 0., 0.]
atom1.id = 0
atom2.pos = [0.5, 0.5, 0.5]
atom2.id = 1
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Alternatively, atom objects can also be set up as

[7]: atom1 = pc.Atom(pos=[0., 0., 0.], id=0)
atom2 = pc.Atom(pos=[0.5, 0.5, 0.5], id=1)

We can check the details of the atom by querying it

[8]: atom1.pos

[8]: [0.0, 0.0, 0.0]

Combining System and Atom

Now that we have created the atoms, we can assign them to the system. We can also assign the same box we created
before.

[9]: sys = pc.System()
sys.atoms = [atom1, atom2]
sys.box = [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

That sets up the system completely. It has both of it’s constituents - atoms and the simulation box. We can check if
everything works correctly.

[10]: sys.atoms

[10]: [<pyscal.catom.Atom at 0x7ff8f0c770f0>, <pyscal.catom.Atom at 0x7ff8f0c77130>]

This returns all the atoms of the system. Alternatively a single atom can be accessed by,

[11]: atom = sys.get_atom(1)

The above call will fetch the atom at position 1 in the list of all atoms in the system. Due to Atom being a completely
C++ class, it is necessary to use get_atom() and set_atom() to access individual atoms and set them back into the
system object after modification. A list of all atoms however can be accessed directly by atoms.

Once you have all the atoms, you can modify any one and add it back to the list of all atoms in the system. The following
statement will set the type of the first atom to 2.

[12]: atom = sys.atoms[0]
atom.type = 2

Lets verify if it was done properly

[13]: atom.type

[13]: 2

Now we can push the atom back to the system with the new type

[14]: sys.set_atom(atom)

2.3. Methods and examples 19



pyscal Documentation, Release 2.10.14

Reading in an input file

We are all set! The System is ready for calculations. However, in most realistic simulation situations, we have many
atoms and it can be difficult to set each of them
individually. In this situation we can read in input file directly. An example input file containing 500 atoms in a
simulation box can be read in automatically. The file we use for this example is a file of the lammps-dump format.
pyscal can also read in POSCAR files. In principle, pyscal only needs the atom positions and simulation box size,
so you can write a python function to process the input file, extract the details and pass to pyscal.

[15]: sys = pc.System()
sys.read_inputfile('conf.dump')

Once again, lets check if the box dimensions are read in correctly

[16]: sys.box

[16]: [[-7.66608, 11.1901], [-7.66915, 11.1931], [-7.74357, 11.2676]]

Now we can get all atoms that belong to this system

[17]: len(sys.atoms)

[17]: 500

We can see that all the atoms are read in correctly and there are 500 atoms in total. Once again, individual atom
properties can be
accessed as before.

[18]: sys.atoms[0].pos

[18]: [-5.66782, -6.06781, -6.58151]

Thats it! Now we are ready for some calculations. You can find more in the examples section of the documentation.

Calculating coordination numbers

In this example, we will read in a configuration from an MD simulation and then calculate the coordination number
distribution.
This example assumes that you read the basic example.

[1]: import pyscal.core as pc
import numpy as np
import matplotlib.pyplot as plt
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Read in a file

The first step is setting up a system. We can create atoms and simulation box using the pyscal.crystal_structures
module. Let us start by importing the module.

[2]: import pyscal.crystal_structures as pcs

[3]: atoms, box = pcs.make_crystal('bcc', lattice_constant= 4.00, repetitions=[6,6,6])

The above function creates an bcc crystal of 6x6x6 unit cells with a lattice constant of 4.00 along with a simulation box
that encloses the particles. We can then create a System and assign the atoms and box to it.

[4]: sys = pc.System()
sys.atoms = atoms
sys.box = box

Calculating neighbors

We start by calculating the neighbors of each atom in the system. There are two ways to do this, using a cutoff method
and using a voronoi polyhedra method. We will try with both of them. First we try with cutoff system - which has
three sub options. We will check each of them in detail.

Cutoff method

Cutoff method takes cutoff distance value and finds all atoms within the cutoff distance of the host atom.

[5]: sys.find_neighbors(method='cutoff', cutoff=4.1)

Now lets get all the atoms.

[6]: atoms = sys.atoms

let us try accessing the coordination number of an atom

[7]: atoms[0].coordination

[7]: 14

As we would expect for a bcc type lattice, we see that the atom has 14 neighbors (8 in the first shell and 6 in the second).
Lets try a more interesting example by reading in a bcc system with thermal vibrations. Thermal vibrations lead to
distortion in atomic positions, and hence there will be a distribution of coordination numbers.

[8]: sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=3.6)
atoms = sys.atoms

We can loop over all atoms and create a histogram of the results

[9]: coord = [atom.coordination for atom in atoms]

Now lets plot and see the results
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[10]: nos, counts = np.unique(coord, return_counts=True)
plt.bar(nos, counts, color="#AD1457")
plt.ylabel("density")
plt.xlabel("coordination number")
plt.title("Cutoff method")

[10]: Text(0.5, 1.0, 'Cutoff method')

Adaptive cutoff methods

pyscal also has adaptive cutoff methods implemented. These methods remove the restriction on having the same
cutoff. A distinct cutoff is selected for each atom during runtime. pyscal uses two distinct algorithms to do this -
sann and adaptive. Please check the documentation for a explanation of these algorithms. For the purpose of this
example, we will use the adaptive algorithm.

adaptive algorithm

[11]: sys.find_neighbors(method='cutoff', cutoff='adaptive', padding=1.5)
atoms = sys.atoms
coord = [atom.coordination for atom in atoms]

Now lets plot

[12]: nos, counts = np.unique(coord, return_counts=True)
plt.bar(nos, counts, color="#AD1457")
plt.ylabel("density")
plt.xlabel("coordination number")
plt.title("Cutoff adaptive method")

[12]: Text(0.5, 1.0, 'Cutoff adaptive method')
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The adaptive method also gives similar results!

Voronoi method

Voronoi method calculates the voronoi polyhedra of all atoms. Any atom that shares a voronoi face area with the host
atom are considered neighbors. Voronoi polyhedra is calculated using the Voro++ code. However, you dont need to
install this specifically as it is linked to pyscal.

[13]: sys.find_neighbors(method='voronoi')

Once again, let us get all atoms and find their coordination

[14]: atoms = sys.atoms
coord = [atom.coordination for atom in atoms]

And visualise the results

[15]: nos, counts = np.unique(coord, return_counts=True)
plt.bar(nos, counts, color="#AD1457")
plt.ylabel("density")
plt.xlabel("coordination number")
plt.title("Voronoi method")

[15]: Text(0.5, 1.0, 'Voronoi method')
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Finally..

All methods find the coordination number, and the results are comparable. Cutoff method is very sensitive to the choice
of cutoff radius, but voronoi method can slightly overestimate the neighbors due to thermal vibrations.

Calculating bond orientational order parameters

This example illustrates the calculation of bond orientational order parameters. Bond order parameters, 𝑞𝑙 and their
averaged versions, 𝑞𝑙 are widely used to identify atoms belong to different crystal structures. In this example, we will
consider bcc, fcc, and hcp, and calculate the 𝑞4 and 𝑞6 parameters and their averaged versions which are widely used
in literature. More details can be found here.

[1]: import pyscal.core as pc
import pyscal.crystal_structures as pcs
import numpy as np
import matplotlib.pyplot as plt

In this example, we analyse MD configurations, first a set of perfect bcc, fcc and hcp structures and another set with
thermal vibrations.

Perfect structures

To create atoms and box for perfect structures, the :mod:~pyscal.crystal_structuresmodule is used. The created
atoms and boxes are then assigned to System objects.

[2]: bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=3.147, repetitions=[4,4,4])
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box
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[3]: fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=3.147, repetitions=[4,4,4])
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

[4]: hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=3.147, repetitions=[4,4,4])
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

Next step is calculation of nearest neighbors. There are two ways to calculate neighbors, by using a cutoff distance
or by using the voronoi cells. In this example, we will use the cutoff method and provide a cutoff distance for each
structure.

Finding the cutoff distance

The cutoff distance is normally calculated in a such a way that the atoms within the first shell is incorporated in this
distance. The :func:pyscal.core.System.calculate_rdf function can be used to find this cutoff distance.

[5]: bccrdf = bcc.calculate_rdf()
fccrdf = fcc.calculate_rdf()
hcprdf = hcp.calculate_rdf()

Now the calculated rdf is plotted

[6]: fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(11,4))
ax1.plot(bccrdf[1], bccrdf[0])
ax2.plot(fccrdf[1], fccrdf[0])
ax3.plot(hcprdf[1], hcprdf[0])
ax1.set_xlim(0,5)
ax2.set_xlim(0,5)
ax3.set_xlim(0,5)
ax1.set_title('bcc')
ax2.set_title('fcc')
ax3.set_title('hcp')
ax2.set_xlabel("distance")
ax1.axvline(3.6, color='red')
ax2.axvline(2.7, color='red')
ax3.axvline(3.6, color='red')

[6]: <matplotlib.lines.Line2D at 0x7f5cfc5f11d0>
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The selected cutoff distances are marked in red in the above plot. For bcc, since the first two shells are close to each
other, for this example, we will take the cutoff in such a way that both shells are included.

Steinhardt’s parameters - cutoff neighbor method

[7]: bcc.find_neighbors(method='cutoff', cutoff=3.6)
fcc.find_neighbors(method='cutoff', cutoff=2.7)
hcp.find_neighbors(method='cutoff', cutoff=3.6)

We have used a cutoff of 3 here, but this is a parameter that has to be tuned. Using a different cutoff for each structure
is possible, but it would complicate the method if the system has a mix of structures. Now we can calculate the 𝑞4 and
𝑞6 distributions

[8]: bcc.calculate_q([4,6])
fcc.calculate_q([4,6])
hcp.calculate_q([4,6])

Thats it! Now lets gather the results and plot them.

[9]: bccq = bcc.get_qvals([4, 6])
fccq = fcc.get_qvals([4, 6])
hcpq = hcp.get_qvals([4, 6])

[10]: plt.scatter(bccq[0], bccq[1], s=60, label='bcc', color='#C62828')
plt.scatter(fccq[0], fccq[1], s=60, label='fcc', color='#FFB300')
plt.scatter(hcpq[0], hcpq[1], s=60, label='hcp', color='#388E3C')
plt.xlabel("$q_4$", fontsize=20)
plt.ylabel("$q_6$", fontsize=20)
plt.legend(loc=4, fontsize=15)

[10]: <matplotlib.legend.Legend at 0x7f5cfc4edc10>
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Firstly, we can see that Steinhardt parameter values of all the atoms fall on one specific point which is due to the
absence of thermal vibrations. Next, all the points are well separated and show good distinction. However, at finite
temperatures, the atomic positions are affected by thermal vibrations and hence show a spread in the distribution. We
will show the effect of thermal vibrations in the next example.

Structures with thermal vibrations

Once again, we create the reqd structures using the :mod:~pyscal.crystal_structures module. Noise can be
applied to atomic positions using the noise keyword as shown below.

[18]: bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=3.147, repetitions=[10,10,
→˓10], noise=0.1)
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

[19]: fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=3.147, repetitions=[10,10,
→˓10], noise=0.1)
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

[20]: hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=3.147, repetitions=[10,10,
→˓10], noise=0.1)
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box
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cutoff method

[21]: bcc.find_neighbors(method='cutoff', cutoff=3.6)
fcc.find_neighbors(method='cutoff', cutoff=2.7)
hcp.find_neighbors(method='cutoff', cutoff=3.6)

And now, calculate 𝑞4, 𝑞6 parameters

[22]: bcc.calculate_q([4,6])
fcc.calculate_q([4,6])
hcp.calculate_q([4,6])

Gather the q vales and plot them

[23]: bccq = bcc.get_qvals([4, 6])
fccq = fcc.get_qvals([4, 6])
hcpq = hcp.get_qvals([4, 6])

[24]: plt.scatter(fccq[0], fccq[1], s=10, label='fcc', color='#FFB300')
plt.scatter(hcpq[0], hcpq[1], s=10, label='hcp', color='#388E3C')
plt.scatter(bccq[0], bccq[1], s=10, label='bcc', color='#C62828')
plt.xlabel("$q_4$", fontsize=20)
plt.ylabel("$q_6$", fontsize=20)
plt.legend(loc=4, fontsize=15)

[24]: <matplotlib.legend.Legend at 0x7f5cfc743a50>

The thermal vibrations cause the distributions to spread, but it still very good. Lechner and Dellago proposed using
the averaged distributions, 𝑞4 − 𝑞6 to better distinguish the distributions. Lets try that.

[25]: bcc.calculate_q([4,6], averaged=True)
fcc.calculate_q([4,6], averaged=True)
hcp.calculate_q([4,6], averaged=True)

[26]: bccaq = bcc.get_qvals([4, 6], averaged=True)
fccaq = fcc.get_qvals([4, 6], averaged=True)

(continues on next page)

28 Chapter 2. Documentation



pyscal Documentation, Release 2.10.14

(continued from previous page)

hcpaq = hcp.get_qvals([4, 6], averaged=True)

Lets see if these distributions are better..

[27]: plt.scatter(fccaq[0], fccaq[1], s=10, label='fcc', color='#FFB300')
plt.scatter(hcpaq[0], hcpaq[1], s=10, label='hcp', color='#388E3C')
plt.scatter(bccaq[0], bccaq[1], s=10, label='bcc', color='#C62828')
plt.xlabel("$q_4$", fontsize=20)
plt.ylabel("$q_6$", fontsize=20)
plt.legend(loc=4, fontsize=15)

[27]: <matplotlib.legend.Legend at 0x7f5cfc125650>

This looks much better! We can see that the resolution is much better than the non averaged versions.

There is also the possibility to calculate structures using Voronoi based neighbor identification too. Let’s try that now.

[28]: bcc.find_neighbors(method='voronoi')
fcc.find_neighbors(method='voronoi')
hcp.find_neighbors(method='voronoi')

[29]: bcc.calculate_q([4,6], averaged=True)
fcc.calculate_q([4,6], averaged=True)
hcp.calculate_q([4,6], averaged=True)

[30]: bccaq = bcc.get_qvals([4, 6], averaged=True)
fccaq = fcc.get_qvals([4, 6], averaged=True)
hcpaq = hcp.get_qvals([4, 6], averaged=True)

Plot the calculated points..

[31]: plt.scatter(fccaq[0], fccaq[1], s=10, label='fcc', color='#FFB300')
plt.scatter(hcpaq[0], hcpaq[1], s=10, label='hcp', color='#388E3C')
plt.scatter(bccaq[0], bccaq[1], s=10, label='bcc', color='#C62828')
plt.xlabel("$q_4$", fontsize=20)

(continues on next page)
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plt.ylabel("$q_6$", fontsize=20)
plt.legend(loc=4, fontsize=15)

[31]: <matplotlib.legend.Legend at 0x7f5cfbe5a510>

Voronoi based method also provides good resolution,the major difference being that the location of bcc distribution is
different.

Analyzing a lammps trajectory

In this example, a lammps trajectory in dump-text format will be read in, and Steinhardt’s parameters will be calculated.

[9]: import pyscal.core as pc
import os
import pyscal.traj_process as ptp
import matplotlib.pyplot as plt
import numpy as np

First, we will use the split_trajectory method from pyscal.traj_process module to help split the trajectory
into individual snapshots.

[41]: trajfile = "traj.light"
files = ptp.split_trajectory(trajfile)

files contain the individual time slices from the trajectory.

[3]: len(files)

[3]: 10

[4]: files[0]

[4]: 'traj.light.snap.0.dat'

Now we can make a small function which reads a single configuration and calculates 𝑞6 values.
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[39]: def calculate_q6(file, format="lammps-dump"):
sys = pc.System()
sys.read_inputfile(file, format=format)
sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_q(6)
q6 = sys.get_qvals(6)
return q6

There are a couple of things of interest in the above function. The find_neighbors method finds the neighbors of the
individual atoms. Here, an adaptive method is used, but, one can also use a fixed cutoff or Voronoi tessellation. Also
only the unaveraged 𝑞6 values are calculated above. The averaged ones can be calculate using the averaged=True
keyword in both calculate_q and get_qvals method. Now we can simply call the function for each file..

[42]: q6s = [calculate_q6(file) for file in files]

We can now visualise the calculated values

[10]: plt.plot(np.hstack(q6s))

[10]: [<matplotlib.lines.Line2D at 0x7fbd87929b20>]

Adding a clustering condition

We will now modify the above function to also find clusters which satisfy particular 𝑞6 value. But first, for a single file.

[12]: sys = pc.System()
sys.read_inputfile(files[0])
sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_q(6)

Now a clustering algorithm can be applied on top using the cluster_atoms method. cluster_atoms uses a
condition as argument which should give a True/False value for each atom. Lets define a condition.

[15]: def condition(atom):
return atom.get_q(6) > 0.5
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The above function returns True for any atom which has a 𝑞6 value greater than 0.5 and False otherwise. Now we
can call the cluster_atoms method.

[16]: sys.cluster_atoms(condition)

[16]: 16

The method returns 16, which here is the size of the largest cluster of atoms which have 𝑞6 value of 0.5 or higher. If
information about all clusters are required, that can also be accessed.

[17]: atoms = sys.atoms

atom.cluster gives the number of the cluster that each atom belongs to. If the value is -1, the atom does not belong
to any cluster, that is, the clustering condition was not met.

[21]: clusters = [atom.cluster for atom in atoms if atom.cluster != -1]

Now we can see how many unique clusters are there, and what their sizes are.

[23]: unique_clusters, counts = np.unique(clusters, return_counts=True)

counts contain all the necessary information. len(counts) will give the number of unique clusters.

[28]: plt.bar(range(len(counts)), counts)
plt.ylabel("Number of atoms in cluster")
plt.xlabel("Cluster ID")

[28]: Text(0.5, 0, 'Cluster ID')

Now we can finally put all of these together into a single function and run it over our individual time slices.

[43]: def calculate_q6_cluster(file, cutoff_q6 = 0.5, format="lammps-dump"):
sys = pc.System()
sys.read_inputfile(file, format=format)
sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_q(6)
def _condition(atom):

return atom.get_q(6) > cutoff_q6
(continues on next page)
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sys.cluster_atoms(condition)
atoms = sys.atoms
clusters = [atom.cluster for atom in atoms if atom.cluster != -1]
unique_clusters, counts = np.unique(clusters, return_counts=True)
return counts

[30]: q6clusters = [calculate_q6_cluster(file) for file in files]

We can plot the number of clusters for each slice

[33]: plt.plot(range(len(q6clusters)), [len(x) for x in q6clusters], 'o-')
plt.xlabel("Time slice")
plt.ylabel("number of unique clusters")

[33]: Text(0, 0.5, 'number of unique clusters')

We can also plot the biggest cluster size

[34]: plt.plot(range(len(q6clusters)), [max(x) for x in q6clusters], 'o-')
plt.xlabel("Time slice")
plt.ylabel("Largest cluster size")

[34]: Text(0, 0.5, 'Largest cluster size')
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The final thing to do is to remove the split files after use.

[44]: for file in files:
os.remove(file)

Using ASE

The above example can also done using ASE. The ASE read method needs to be imported.

[36]: from ase.io import read

[37]: traj = read("traj.light", format="lammps-dump-text", index=":")

In the above function, index=":" tells ase to read the complete trajectory. The individual slices can now be accessed
by indexing.

[38]: traj[0]

[38]: Atoms(symbols='H500', pbc=False, cell=[18.21922, 18.22509, 18.36899], momenta=...)

We can use the same functions as above, but by specifying a different file format.

[46]: q6clusters_ase = [calculate_q6_cluster(x, format="ase") for x in traj]

We will plot and compare with the results from before,

[47]: plt.plot(range(len(q6clusters_ase)), [max(x) for x in q6clusters_ase], 'o-')
plt.xlabel("Time slice")
plt.ylabel("Largest cluster size")

[47]: Text(0, 0.5, 'Largest cluster size')
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As expected, the results are identical for both calculations!

Disorder variable

In this example, disorder variable which was introduced to measure the disorder of a system is explored. We start by
importing the necessary modules. We will use :mod:~pyscal.crystal_structures to create the necessary crystal
structures.

[1]: import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt
import numpy as np

First an fcc structure with a lattice constant of 4.00 is created.

[3]: fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4])

The created atoms and box are assigned to a :class:~pyscal.core.System object.

[4]: fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

The next step is find the neighbors, and the calculate the Steinhardt parameter based on which we could calculate the
disorder variable.

[5]: fcc.find_neighbors(method='cutoff', cutoff='adaptive')

Once the neighbors are found, we can calculate the Steinhardt parameter value. In this example 𝑞 = 6 will be used.

[6]: fcc.calculate_q(6)

Finally, disorder parameter can be calculated.

[7]: fcc.calculate_disorder()

The calculated disorder value can be accessed for each atom using the :attr:~pyscal.catom.disorder variable.
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[9]: atoms = fcc.atoms

[10]: disorder = [atom.disorder for atom in atoms]

[12]: np.mean(disorder)

[12]: -1.041556887034408e-16

As expected, for a perfect fcc structure, we can see that the disorder is zero. The variation of disorder variable on
a distorted lattice can be explored now. We will once again use the noise keyword along with :func:~pyscal.
crystal_structures.make_crystal to create a distorted lattice.

[13]: fcc_atoms_d1, fcc_box_d1 = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,
→˓4], noise=0.01)
fcc_d1 = pc.System()
fcc_d1.atoms = fcc_atoms_d1
fcc_d1.box = fcc_box_d1

Once again, find neighbors and then calculate disorder

[14]: fcc_d1.find_neighbors(method='cutoff', cutoff='adaptive')
fcc_d1.calculate_q(6)
fcc_d1.calculate_disorder()

Check the value of disorder

[15]: atoms_d1 = fcc_d1.atoms

[16]: disorder = [atom.disorder for atom in atoms_d1]

[17]: np.mean(disorder)

[17]: 0.013889967380485688

The value of average disorder for the system has increased with noise. Finally trying with a high amount of noise.

[18]: fcc_atoms_d2, fcc_box_d2 = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,
→˓4], noise=0.1)
fcc_d2 = pc.System()
fcc_d2.atoms = fcc_atoms_d2
fcc_d2.box = fcc_box_d2

[19]: fcc_d2.find_neighbors(method='cutoff', cutoff='adaptive')
fcc_d2.calculate_q(6)
fcc_d2.calculate_disorder()

[20]: atoms_d2 = fcc_d2.atoms

[21]: disorder = [atom.disorder for atom in atoms_d2]
np.mean(disorder)

[21]: 1.8469165876016702
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The value of disorder parameter shows an increase with the amount of lattice distortion. An averaged version of disorder
parameter, averaged over the neighbors for each atom can also be calculated as shown below.

[22]: fcc_d2.calculate_disorder(averaged=True)

[23]: atoms_d2 = fcc_d2.atoms
disorder = [atom.avg_disorder for atom in atoms_d2]
np.mean(disorder)

[23]: 1.850630088115515

The disorder parameter can also be calculated for values of Steinhardt parameter other than 6. For example,

[24]: fcc_d2.find_neighbors(method='cutoff', cutoff='adaptive')
fcc_d2.calculate_q([4, 6])
fcc_d2.calculate_disorder(q=4, averaged=True)

[25]: atoms_d2 = fcc_d2.atoms
disorder = [atom.disorder for atom in atoms_d2]
np.mean(disorder)

[25]: 1.880741277448693

𝑞 = 4, for example, can be useful when measuring disorder in bcc crystals

Distinction of solid liquid atoms and clustering

In this example, we will take one snapshot from a molecular dynamics simulation which has a solid cluster in liquid.
The task is to identify solid atoms and cluster them. More details about the method can be found here.

The first step is, of course, importing all the necessary module. For visualisation, we will use Ovito.
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The above image shows a visualisation of the system using Ovito. Importing modules,

[1]: import pyscal.core as pc

Now we will set up a System with this input file, and calculate neighbors. Here we will use a cutoff method to find
neighbors. More details about finding neighbors can be found here.

[2]: sys = pc.System()
sys.read_inputfile('cluster.dump')
sys.find_neighbors(method='cutoff', cutoff=3.63)

Once we compute the neighbors, the next step is to find solid atoms. This can be done using System.find_solids
method. There are few parameters that can be set, which can be found in detail here.

[3]: sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=False)

The above statement found all the solid atoms. Solid atoms can be identified by the value of the solid attribute. For
that we first get the atom objects and select those with solid value as True.

[4]: atoms = sys.atoms
solids = [atom for atom in atoms if atom.solid]
len(solids)

[4]: 202
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There are 202 solid atoms in the system. In order to visualise in Ovito, we need to first write it out to a trajectory file.
This can be done with the help of to_file method of System. This method can help to save any attribute of the atom
or ant Steinhardt parameter value.

[15]: sys.to_file('sys.solid.dat', custom = ['solid'])

We can now visualise this file in Ovito. After opening the file in Ovito, the modifier compute property can be selected.
The Output property should be selection and in the expression field, solid==0 can be selected to select all the
non solid atoms. Applying a modifier delete selected particles can be applied to delete all the non solid particles. The
system after removing all the liquid atoms is shown below.

Clustering algorithm

You can see that there is a cluster of atom. The clustering functions that pyscal offers helps in this regard. If you used
find_clusters with cluster=True, the clustering is carried out. Since we did used cluster=False above, we
will rerun the function

[16]: sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=True)

[16]: 176

You can see that the above function call returned the number of atoms belonging to the largest cluster as an output. In
order to extract atoms that belong to the largest cluster, we can use the largest_cluster attribute of the atom.
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[18]: atoms = sys.atoms
largest_cluster = [atom for atom in atoms if atom.largest_cluster]
len(largest_cluster)

[18]: 176

The value matches that given by the function. Once again we will save this information to a file and visualise it in
Ovito.

[19]: sys.to_file('sys.cluster.dat', custom = ['solid', 'largest_cluster'])

The system visualised in Ovito following similar steps as above is shown below.

It is clear from the image that the largest cluster of solid atoms was successfully identified. Clustering can be done over
any property. The following example with the same system will illustrate this.
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Clustering based on a custom property

In pyscal, clustering can be done based on any property. The following example illustrates this. To find the clusters
based on a custom property, the System.clusters_atoms method has to be used. The simulation box shown above
has the centre roughly at (25, 25, 25). For the custom clustering, we will cluster all atoms within a distance of 10 from
the the rough centre of the box at (25, 25, 25). Let us define a function that checks the above condition.

[24]: def check_distance(atom):
#get position of atom
pos = atom.pos
#calculate distance from (25, 25, 25)
dist = ((pos[0]-25)**2 + (pos[1]-25)**2 + (pos[2]-25)**2)**0.5
#check if dist < 10
return (dist <= 10)

The above function would return True or False depending on a condition and takes the Atom as an argument. These
are the two important conditions to be satisfied. Now we can pass this function to cluster. First, set up the system and
find the neighbors.

[21]: sys = pc.System()
sys.read_inputfile('cluster.dump')
sys.find_neighbors(method='cutoff', cutoff=3.63)

Now cluster

[25]: sys.cluster_atoms(check_distance)

[25]: 242

There are 242 atoms in the cluster! Once again we can check this, save to a file and visualise in ovito.

[27]: atoms = sys.atoms
largest_cluster = [atom for atom in atoms if atom.largest_cluster]
len(largest_cluster)

[27]: 242

[28]: sys.to_file('sys.dist.dat', custom = ['solid', 'largest_cluster'])
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This example illustrates that any property can be used to cluster the atoms!

Voronoi parameters

Voronoi tessellation can be used to identify local structure by counting the number of faces of the Voronoi polyhedra
of an atom. For each atom a vector ⟨𝑛3 𝑛4 𝑛5 𝑛6 can be calculated where 𝑛3 is the number of Voronoi faces of the
associated Voronoi polyhedron with three vertices, 𝑛4 is with four vertices and so on. Each perfect crystal structure
such as a signature vector, for example, bcc can be identified by ⟨0 6 0 8⟩ and fcc can be identified using ⟨0 12 0 0⟩. It
is also a useful tool for identifying icosahedral structure which has the fingerprint ⟨0 0 12 0⟩.

[1]: import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt
import numpy as np

The :mod:~pyscal.crystal_structures module is used to create different perfect crystal structures. The created
atoms and simulation box is then assigned to a :class:~pyscal.core.System object. For this example, fcc, bcc, hcp
and diamond structures are created.

[2]: fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4])
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box
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[3]: bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=4, repetitions=[4,4,4])
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

[4]: hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=4, repetitions=[4,4,4])
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

Before calculating the Voronoi polyhedron, the neighbors for each atom need to be found using Voronoi method.

[6]: fcc.find_neighbors(method='voronoi')
bcc.find_neighbors(method='voronoi')
hcp.find_neighbors(method='voronoi')

Now, Voronoi vector can be calculated

[7]: fcc.calculate_vorovector()
bcc.calculate_vorovector()
hcp.calculate_vorovector()

The calculated parameters for each atom can be accessed using the :attr:~pyscal.catom.Atom.vorovector attribute.

[8]: fcc_atoms = fcc.atoms
bcc_atoms = bcc.atoms
hcp_atoms = hcp.atoms

[9]: fcc_atoms[10].vorovector

[9]: [0, 12, 0, 0]

As expected, fcc structure exhibits 12 faces with four vertices each. For a single atom, the difference in the Voronoi
fingerprint is shown below

[21]: fig, ax = plt.subplots()
ax.bar(np.array(range(4))-0.2, fcc_atoms[10].vorovector, width=0.2, label="fcc")
ax.bar(np.array(range(4)), bcc_atoms[10].vorovector, width=0.2, label="bcc")
ax.bar(np.array(range(4))+0.2, hcp_atoms[10].vorovector, width=0.2, label="hcp")
ax.set_xticks([1,2,3,4])
ax.set_xlim(0.5, 4.25)
ax.set_xticklabels(['$n_3$', '$n_4$', '$n_5$', '$n_6$'])
ax.set_ylabel("Number of faces")
ax.legend()

[21]: <matplotlib.legend.Legend at 0x7f1dc90d52d0>
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The difference in Voronoi fingerprint for bcc and the closed packed structures is clearly visible. Voronoi tessellation,
however, is incapable of distinction between fcc and hcp structures.

Voronoi volume

Voronoi volume, which is the volume of the Voronoi polyhedron is calculated when the neighbors are found. The
volume can be accessed using the :attr:~pyscal.catom.Atom.volume attribute.

[27]: fcc_atoms = fcc.atoms

[28]: fcc_vols = [atom.volume for atom in fcc_atoms]

[29]: np.mean(fcc_vols)

[29]: 16.0

Angular parameter

This illustartes the use of angular parameter to identify diamond structure. Angular parameter was introduced by
Uttomark et al., and measures the tetrahedrality of the local atomic structure. An atom belonging to diamond structure
has four nearest neighbors which gives rise to six three body angles around the atom. The angular parameter 𝐴 is then
defined as,

𝐴 =
∑︀6

𝑖=1(cos(𝜃𝑖) + 1
3 )2

An atom belonging to diamond structure would show the value of angular params close to 0. The following example
illustrates the use of this parameter.

[1]: import pyscal.core as pc
import pyscal.crystal_structures as pcs
import numpy as np
import matplotlib.pyplot as plt
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Create structures

The first step is to create some structures using the pyscal crystal structures module and assign it to a System. This can
be done as follows-

[2]: atoms, box = pcs.make_crystal('diamond', lattice_constant=4, repetitions=[3,3,3])
sys = pc.System()
sys.atoms = atoms
sys.box = box

Now we can find the neighbors of all atoms. In this case we will use an adaptive method which can find an individual
cutoff for each atom.

[3]: sys.find_neighbors(method='cutoff', cutoff='adaptive')

Finally, the angular criteria can be calculated by,

[4]: sys.calculate_angularcriteria()

The above function assigns the angular value for each atom which can be accessed using,

[5]: atoms = sys.atoms
angular = [atom.angular for atom in atoms]

The angular values are zero for atoms that belong to diamond structure.

𝜒 parameters

𝜒 parameters introduced by Ackland and Jones measures the angles generated by pairs of neighbor atom around the
host atom, and assigns it to a histogram to calculate a local structure. In this example, we will create different crystal
structures and see how the 𝜒 parameters change with respect to the local coordination.

[1]: import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt
import numpy as np

The :mod:~pyscal.crystal_structures module is used to create different perfect crystal structures. The created
atoms and simulation box is then assigned to a :class:~pyscal.core.System object. For this example, fcc, bcc, hcp
and diamond structures are created.

[2]: fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4])
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

[3]: bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=4, repetitions=[4,4,4])
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

[4]: hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=4, repetitions=[4,4,4])
hcp = pc.System()

(continues on next page)
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(continued from previous page)

hcp.atoms = hcp_atoms
hcp.box = hcp_box

[5]: dia_atoms, dia_box = pcs.make_crystal('diamond', lattice_constant=4, repetitions=[4,4,4])
dia = pc.System()
dia.atoms = dia_atoms
dia.box = dia_box

Before calculating 𝜒 parameters, the neighbors for each atom need to be found.

[6]: fcc.find_neighbors(method='cutoff', cutoff='adaptive')
bcc.find_neighbors(method='cutoff', cutoff='adaptive')
hcp.find_neighbors(method='cutoff', cutoff='adaptive')
dia.find_neighbors(method='cutoff', cutoff='adaptive')

Now, 𝜒 parameters can be calculated

[7]: fcc.calculate_chiparams()
bcc.calculate_chiparams()
hcp.calculate_chiparams()
dia.calculate_chiparams()

The calculated parameters for each atom can be accessed using the :attr:~pyscal.catom.Atom.chiparams attribute.

[8]: fcc_atoms = fcc.atoms
bcc_atoms = bcc.atoms
hcp_atoms = hcp.atoms
dia_atoms = dia.atoms

[9]: fcc_atoms[10].chiparams

[9]: [6, 0, 0, 0, 24, 12, 0, 24, 0]

The output is an array of length 9 which shows the number of neighbor angles found within specific bins as explained
here. The output for one atom from each structure is shown below.

[28]: plt.bar(np.array(range(9))-0.3, fcc_atoms[10].chiparams, width=0.2, label="fcc")
plt.bar(np.array(range(9))-0.1, bcc_atoms[10].chiparams, width=0.2, label="bcc")
plt.bar(np.array(range(9))+0.1, hcp_atoms[10].chiparams, width=0.2, label="hcp")
plt.bar(np.array(range(9))+0.3, dia_atoms[10].chiparams, width=0.2, label="diamond")
plt.xlabel("$\chi$")
plt.ylabel("Number of angles")
plt.legend()

[28]: <matplotlib.legend.Legend at 0x7f2f4f408650>
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The atoms exhibit a distinct fingerprint for each structure. Structural identification can be made up comparing the ratio
of various 𝜒 parameters as described in the original publication.

Centrosymmetry parameter

Centrosymmetry parameter (CSP) was introduced by *Kelchner et al.* to identify defects in crystals. The parameter
measures the loss of local symmetry. For an atom with 𝑁 nearest neighbors, the parameter is given by,

CSP =

𝑁/2∑︁
𝑖=1

⃒⃒
r𝑖 + r𝑖+𝑁/2

⃒⃒2
r𝑖 and r𝑖+𝑁/2 are vectors from the central atom to two opposite pairs of neighbors. There are two main methods to
identify the opposite pairs of neighbors as described in this publication. The first of the approaches is called *Greedy
Edge Selection*(GES) and is implemented in LAMMPS and Ovito. GES algorithm calculates a weight 𝑤𝑖𝑗 = |r𝑖 +r𝑗 |
for all combinations of neighbors around an atom and calculates CSP over the smallest 𝑁/2 weights.

A centrosymmetry parameter calculation using GES algorithm can be carried out as follows-

[ ]: import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12)

nmax parameter specifies the number of nearest neighbors to be considered for the calculation of CSP. The second
algorithm is called the Greedy Vertex Matching and is implemented in AtomEye and Atomsk. This algorithm orders
the neighbors atoms in order of increasing distance from the central atom. From this list, the closest neighbor is paired
with its lowest weight partner and both atoms removed from the list. This process is continued until no more atoms are
remaining in the list. CSP calculation using this algorithm can be carried out by,

[ ]: import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12, algorithm = "gvm")
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Cowley short range order parameter

The Cowley short range order parameter can be used to find if an alloy is ordered or not. The order parameter is given
by,

𝛼𝑖 = 1 − 𝑛𝑖

𝑚𝐴𝑐𝑖

where 𝑛𝑖 is the number of atoms of the non reference type among the 𝑐𝑖 atoms in the 𝑖th shell. 𝑚𝐴 is the concentration
of the non reference atom.

We can start by importing the necessary modules

[12]: import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt

We need a binary alloy structure to calculate the order parameter. We will use the crystal structures modules to do this.
Here, we will create a L12 structure.

[13]: atoms, box = pcs.make_crystal('l12', lattice_constant=4.00, repetitions=[2,2,2])

In order to use the order parameter, we need to have two shells of neighbors around the atom. In order to get two shells
of neighbors, we will first estimate a cutoff using the radial distribution function.

[14]: val, dist = sys.calculate_rdf()

We can plot the rdf,

[15]: plt.plot(dist, val)
plt.xlabel(r"distance $\AA$")
plt.ylabel(r"$g(r)$")

[15]: Text(0, 0.5, '$g(r)$')

In this case, a cutoff of about 4.5 will make sure that two shells are included. Now the neighbors are calculated using
this cutoff.
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[16]: sys.find_neighbors(method='cutoff', cutoff=4.5)

Finally we can calculate the short range order. We will use the reference type as 1 and also specify the average keyword
as True. This will allow us to get an average value for the whole simulation box.

[17]: sys.calculate_sro(reference_type=1, average=True)

[17]: array([-0.33333333, 1. ])

Value for individual atoms can be accessed by,

[18]: atoms = sys.atoms

[19]: atoms[4].sro

[19]: [-0.33333333333333326, 1.0]

Only atoms of the non reference type will have this value!

Entropy parameters

In this example, the entropy parameters are calculated and used for distinction of solid and liquid. For a description of
entropy parameters, see here.

[1]: import pyscal.core as pc
import matplotlib.pyplot as plt
import numpy as np

We have two test configurations for Al at 900 K, one is fcc structured and the other one is in liquid state. We calculate
the entropy parameters for each of these configurations. First we start by reading in the fcc configuration. For entropy
parameters, the values of the integration limit 𝑟𝑚 is chosen as 1.4, based on the original publication.

[2]: sys = pc.System()
sys.read_inputfile("../tests/conf.fcc.Al.dump")
sys.find_neighbors(method="cutoff", cutoff=0)

The values of 𝑟𝑚 is in units of lattice constant, so we need to calculate the lattice constant first. Since is a cubic box,
we can do this by,

[3]: lat = (sys.box[0][1]-sys.box[0][0])/5

Now we calculate the entropy parameter and its averaged version. Averaging can be done in two methods, as a sim-
ple average over neighbors or using a switching function. We will use a simple averaging over the neighbors. The
local keyword allows to use a local density instead of the global one. However, this only works if the neighbors were
calculated using a cutoff method.

[4]: sys.calculate_entropy(1.4*lat, averaged=True, local=True)

The calculated values are stored for each atom. This can be accessed as follows,

[5]: atoms = sys.atoms
solid_entropy = [atom.entropy for atom in atoms]
solid_avg_entropy = [atom.avg_entropy for atom in atoms]

Now we can quickly repeat the calculation for the liquid structure.
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[6]: sys = pc.System()
sys.read_inputfile("../tests/conf.lqd.Al.dump")
sys.find_neighbors(method="cutoff", cutoff=0)
lat = (sys.box[0][1]-sys.box[0][0])/5
sys.calculate_entropy(1.4*lat, local=True, averaged=True)
atoms = sys.atoms
liquid_entropy = [atom.entropy for atom in atoms]
liquid_avg_entropy = [atom.avg_entropy for atom in atoms]

Finally we can plot the results

[7]: xmin = -3.55
xmax = -2.9
bins = np.arange(xmin, xmax, 0.01)
x = plt.hist(solid_entropy, bins=bins, density=True, alpha=0.5, color="#EF9A9A")
x = plt.hist(solid_avg_entropy, bins=bins, density=True, alpha=0.5, color="#B71C1C")
x = plt.hist(liquid_entropy, bins=bins, density=True, alpha=0.5, color="#90CAF9")
x = plt.hist(liquid_avg_entropy, bins=bins, density=True, alpha=0.5, color="#0D47A1")
plt.xlabel(r"$s_s^i$")

[7]: Text(0.5, 0, '$s_s^i$')

The distributions of 𝑠𝑖𝑠 given in light red and light blue are fairly distinct but show some overlap. The averaged entropy
parameter, 𝑠𝑖𝑠 show distinct peaks which can distinguish solid and liquid very well.

[8]: np.mean(solid_entropy), np.mean(solid_avg_entropy)

[8]: (-3.47074287018929, -3.47074287018929)
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Calculating energy

pyscal can also be used for quick energy calculations. The energy per atom can give an insight into the local environ-
ment. pyscal relies on the python library interface of LAMMPS for calculation of energy. The python library interface,
hence, is a requirement for energy calculation. The easiest way to set up the LAMMPS library is by installing LAMMPS
through the conda package.

conda install -c conda-forge lammps

Alternatively, this page provides information on how to compile manually.

Interatomic potentials

An interatomic potential is also required for the calculation of energy. The potential can be of any type that LAMMPS
supports. For this example, we will use an EAM potential for Mo which is provided in the file Mo.set.

We start by importing the necessary modules,

[1]: import pyscal.core as pc
import matplotlib.pyplot as plt
import numpy as np

For this example, a LAMMPS dump file will be read in and the energy will be calculated.

[2]: sys = pc.System()
sys.read_inputfile("conf.bcc.dump")

Now the energy can be calculated by,

[3]: sys.calculate_energy(species=['Mo'], pair_style='eam/alloy',
pair_coeff='* * Mo.set Mo', mass=95)

The first keyword above is species, which specifies the atomic species. This is required for ASE module which
is used under the hood for convertion of files. pair_style species the type of potential used in LAMMPS. See
documentation here. pair_coeff is another LAMMPS command which is documented well here. Also, the mass
needs to be provided.

Once the calculation is over, the energy can be accessed for each atom as follows,

[4]: atoms = sys.atoms

[5]: atoms[0].energy

[5]: -6.743130736133679

It is also possible to find the energy averaged over the neighbors using the averaged keyword. However, a neighbor
calculation should be done before.

[6]: sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_energy(species=['Mo'], pair_style='eam/alloy',

pair_coeff='* * Mo.set Mo', mass=95, averaged=True)

[7]: atoms = sys.atoms
atoms[0].avg_energy
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[7]: -6.534395941639571

We have two test configurations for Al at 900 K, one is fcc structured and the other one is in liquid state. We calculate
the energy parameters for each of these configurations.

[8]: sys = pc.System()
sys.read_inputfile("../tests/conf.fcc.Al.dump")
sys.find_neighbors(method="cutoff", cutoff=0)

[9]: sys.calculate_energy(species=['Al'], pair_style='eam/alloy',
pair_coeff='* * Al.eam.fs Al', mass=26.98, averaged=True)

Now lets gather the energies

[10]: atoms = sys.atoms
solid_energy = [atom.energy for atom in atoms]
solid_avg_energy = [atom.avg_energy for atom in atoms]

We can repeat the calculations for the liquid phase,

[11]: sys = pc.System()
sys.read_inputfile("../tests/conf.lqd.Al.dump")
sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_energy(species=['Al'], pair_style='eam/alloy',

pair_coeff='* * Al.eam.fs Al', mass=26.98, averaged=True)
atoms = sys.atoms
liquid_energy = [atom.energy for atom in atoms]
liquid_avg_energy = [atom.avg_energy for atom in atoms]

Finally we can plot the results

[13]: xmin = -3.5
xmax = -2.5
bins = np.arange(xmin, xmax, 0.01)
x = plt.hist(solid_energy, bins=bins, density=True, alpha=0.5, color="#EF9A9A")
x = plt.hist(solid_avg_energy, bins=bins, density=True, alpha=0.5, color="#B71C1C")
x = plt.hist(liquid_energy, bins=bins, density=True, alpha=0.5, color="#90CAF9")
x = plt.hist(liquid_avg_energy, bins=bins, density=True, alpha=0.5, color="#0D47A1")
plt.xlabel(r"Energy")

[13]: Text(0.5, 0, 'Energy')
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Entropy and enthalpy parameters

In this example, energy and entropy parameters will be used for structural distinction. We will consider bcc, fcc, and
hcp structures to calculate the parameters.

[1]: import pyscal.core as pc
import pyscal.crystal_structures as pcs
import numpy as np
import matplotlib.pyplot as plt

Now we will create some structures with thermal vibrations

[2]: bcc_atoms, bcc_box = pcs.make_crystal('bcc',
lattice_constant=3.147,
repetitions=[10,10,10], noise=0.1)

bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

[3]: fcc_atoms, fcc_box = pcs.make_crystal('fcc',
lattice_constant=3.147,
repetitions=[10,10,10], noise=0.1)

fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

[4]: hcp_atoms, hcp_box = pcs.make_crystal('hcp',
lattice_constant=3.147,
repetitions=[10,10,10], noise=0.1)

hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

The next step is to calculate the neighbors using adaptive cutoff
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[5]: bcc.find_neighbors(method='cutoff', cutoff=0)
fcc.find_neighbors(method='cutoff', cutoff=0)
hcp.find_neighbors(method='cutoff', cutoff=0)

In order to calculate energy, a molybdenum potential is used here.

[6]: bcc.calculate_energy(species=['Mo'], pair_style='eam/alloy',
pair_coeff='* * Mo.set Mo', mass=95,
averaged=True)

fcc.calculate_energy(species=['Mo'], pair_style='eam/alloy',
pair_coeff='* * Mo.set Mo', mass=95,
averaged=True)

hcp.calculate_energy(species=['Mo'], pair_style='eam/alloy',
pair_coeff='* * Mo.set Mo', mass=95,
averaged=True)

Now we will calculate the entropy parameters

[7]: latbcc = (bcc.box[0][1]-bcc.box[0][0])/10
latfcc = (fcc.box[0][1]-fcc.box[0][0])/10
lathcp = (hcp.box[0][1]-hcp.box[0][0])/10

[8]: bcc.calculate_entropy(1.4*latbcc, averaged=True, local=True)
fcc.calculate_entropy(1.4*latfcc, averaged=True, local=True)
hcp.calculate_entropy(1.4*lathcp, averaged=True, local=True)

Gather the values

[9]: bccenergy = [atom.energy for atom in bcc.atoms]
avgbccenergy = [atom.avg_energy for atom in bcc.atoms]
fccenergy = [atom.energy for atom in fcc.atoms]
avgfccenergy = [atom.avg_energy for atom in fcc.atoms]
hcpenergy = [atom.energy for atom in hcp.atoms]
avghcpenergy = [atom.avg_energy for atom in hcp.atoms]

[10]: bccentropy = [atom.entropy for atom in bcc.atoms]
avgbccentropy = [atom.avg_entropy for atom in bcc.atoms]
fccentropy = [atom.entropy for atom in fcc.atoms]
avgfccentropy = [atom.avg_entropy for atom in fcc.atoms]
hcpentropy = [atom.entropy for atom in hcp.atoms]
avghcpentropy = [atom.avg_entropy for atom in hcp.atoms]

[13]: plt.scatter(fccenergy, fccentropy, s=10, label='fcc', color='#FFB300')
plt.scatter(hcpenergy, hcpentropy, s=10, label='hcp', color='#388E3C')
plt.scatter(bccenergy, bccentropy, s=10, label='bcc', color='#C62828')
plt.xlabel("Energy")
plt.ylabel("Entropy")
plt.legend()

[13]: <matplotlib.legend.Legend at 0x7f82fd6bc690>
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[14]: plt.scatter(avgfccenergy, avgfccentropy, s=10, label='fcc', color='#FFB300')
plt.scatter(avghcpenergy, avghcpentropy, s=10, label='hcp', color='#388E3C')
plt.scatter(avgbccenergy, avgbccentropy, s=10, label='bcc', color='#C62828')
plt.xlabel("Avg Energy")
plt.ylabel("Avg Entropy")
plt.legend()

[14]: <matplotlib.legend.Legend at 0x7f82fd615d90>

2.3. Methods and examples 55



pyscal Documentation, Release 2.10.14

Visualizing System objects

In this notebook, experimental plotting methods of pyscal is illustrated. The plotting functionality works only through
jupyter notebooks or jupyter lab. It depends on ipywidgets and plotly to render the output. There is some extra config-
uration that needs to be done which is mentioned below:

For Jupyter Notebooks

pip install "notebook>=5.3" "ipywidgets>=7.2"

or

conda install "notebook>=5.3" "ipywidgets>=7.2"

For Jupyter Lab

pip install jupyterlab "ipywidgets>=7.5"

or

conda install jupyterlab "ipywidgets=7.5"

followed by,

jupyter labextension install jupyterlab-plotly@4.11.0
jupyter labextension install @jupyter-widgets/jupyterlab-manager plotlywidget@4.11.0

We start by importing the necessary modules

[1]: import pyscal.core as pc

Now we can set up a system and read in a file to be visualized

[2]: sys = pc.System()
sys.read_inputfile("../tests/conf8k.dump", customkeys=["vx", "vy", "vz"])

We will further calculate some q values and also the solid particles in the system which will be used later for visualization

[3]: sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_q([4, 5, 6], averaged=True)
sys.find_solids()

[3]: 448

In order to visualize the system, the show method can be used. This method renders a widget which a slider for the
radius of atoms and a text box for entering the colormap to be used for coloring atoms. A list of colormaps can be
found here. The widget also has a Render plot button which will generate the plot.

[4]: sys.show()

interactive(children=(FloatSlider(value=1.0, description='radius', max=30.0, min=1.0,␣
→˓step=1.0), Text(value='S...
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This is just a general rendering of the system. Further customization can be done. For example, we can color the atoms
using the averaged q6 values.

[5]: sys.show(colorby="aq6")

interactive(children=(FloatSlider(value=1.0, description='radius', max=30.0, min=1.0,␣
→˓step=1.0), Text(value='S...

We can also select which atoms are to be plotted. For example we can refine the figure to only plot the atoms that are
identified as solid in the find_solids method.

[6]: sys.show(colorby="aq6", filterby="solid")

interactive(children=(FloatSlider(value=1.0, description='radius', max=30.0, min=1.0,␣
→˓step=1.0), Text(value='S...

Any atom property can used to color the map. These include any Atom attribute, calculated q values which can be
accessed by qx or aqx, for traditional and averaged Steinhardts parameters respectively. x stands for the number of q.
It can also be attributes that are stored in the Atom.custom variable. In the above code bit, when the file was read in, the
custom variable was used to read in the velocities for each atom. We will color atoms using the velocity in x direction,
that is vx attribute.

[9]: sys.show(colorby="vx")

interactive(children=(FloatSlider(value=1.0, description='radius', max=30.0, min=1.0,␣
→˓step=1.0), Text(value='S...

pyscal Trajectory

Trajectory is a pyscal module intended for working with molecular dynamics trajectories which contain more than
one time slice. Currently, the module only supports LAMMPS dump text file formats. It can be used to get a single or
slices from a trajectory, trim the trajectory or even combine multiple trajectories. The example below illustrates various
uses of the module.

``Trajectory`` is an experimental feature at the moment and may undergo significant changes in future releases
Start with importing the module

[1]: from pyscal import Trajectory

Read in a trajectory.

[2]: traj = Trajectory("traj.light")

When using the above statement, the trajectory is not yet read in to memory. Just the basic information is available
now.

[3]: traj

[3]: Trajectory of 10 slices with 500 atoms

We can know the number of slices in the trajectory and the number of atoms. Trajectory only works with fixed
number of atoms.

Now, one can get a single slice or multiple slices just as is done with a python list. Getting the 2nd slice (counting starts
from 0!).
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[4]: sl = traj[2]
sl

[4]: Trajectory slice
2-2
natoms=500

This slice can now be converted to a more usable format, either to a pyscal System or just written to another text file.
Convert to a pyscal System object,

[5]: sys = sl.to_system()
sys

[5]: [<pyscal.core.System at 0x7f81f93971d0>]

System objects contain all the information. The atomic positions, simulation box and so on are easily accessible.

[6]: sys[0].box

[6]: [[18.22887, 0.0, 0.0], [0.0, 18.234740000000002, 0.0], [0.0, 0.0, 18.37877]]

[7]: sys[0].atoms[0].pos

[7]: [-4.9941, -6.34185, -6.8551]

If information other than positions are required, the customkeys keyword can be used. For example, for velocity in
the x direction,

[8]: sys = sl.to_system(customkeys=["vx"])
sys

[8]: [<pyscal.core.System at 0x7f81f9397530>]

[9]: sys[0].atoms[0].custom["vx"]

[9]: '-1.21558'

Instead of creating a System object, the slice can also be written to a file directly.

[10]: sl.to_file("test.dump")

Like normal python lists, multiple slices can also be accessed directly

[12]: sl1 = traj[0:4]
sl1

[12]: Trajectory slice
0-3
natoms=500

to_system and to_file methods can be used on this object too.

Multiple slices can be added together

[13]: sl2 = traj[5:7]
sl2
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[13]: Trajectory slice
5-6
natoms=500

[14]: slnew = sl1+sl2
slnew

[14]: Trajectory slice
0-3/5-6
natoms=500

Once again, one could write the combined trajectory slice to a file, or create a System object out of it.

2.4 pyscal reference

2.4.1 pyscal Reference

pyscal.core module

Main module of pyscal. This module contains definitions of the two major classes in pyscal - the System and Atom .
Atom is a pure pybind11 class whereas System is a hybrid class with additional python definitions. For the ease of use,
Atom class should be imported from the core module. The original pybind11 definitions of Atom and System can be
found in catom and csystem respectively.

class pyscal.core.System
Bases: pyscal.csystem.System

A python/pybind11 hybrid class for holding the properties of a system.

box
A list containing the dimensions of the simulation box in the format [[x_low, x_high], [y_low, y_high],
[z_low, z_high]]

Type list of list of floats

atoms

Type list of Atom objects

Notes

A System consists of two major components - the simulation box and the atoms. All the associated variables are
then calculated using this class.

Note: atoms can be accessed or set as atoms. However, due to technical reasons individual atoms should be
accessed using the get_atom() method. An atom can be assigned to the atom using the set_atom() method.
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Examples

>>> sys = System()
>>> sys.read_inputfile('atoms.dat')

__init__()

add_atoms(atoms)
Add a given list of atoms

Parameters atoms (List of Atoms) –

Returns
Return type None

property atoms
Atom access

property box
Wrap for inbuilt box

calculate_angularcriteria()
Calculate the angular criteria for each atom :param None:

Returns
Return type None

Notes

Calculates the angular criteria for each atom as defined in [1]_. Angular criteria is useful for identification
of diamond cubic structures. Angular criteria is defined by,

𝐴 =

6∑︁
𝑖=1

(cos(𝜃𝑖) +
1

3
)2

where cos(theta) is the angle size suspended by each pair of neighbors of the central atom. A will have a
value close to 0 for structures if the angles are close to 109 degrees. The calculated A parameter for each
atom is stored in angular.

References

calculate_centrosymmetry(nmax=12, get_vals=True)
Calculate the centrosymmetry parameter

Parameters nmax (int, optional) – number of neighbors to be considered for centrosymme-
try parameters. Has to be a positive, even integer. Default 12

Returns
Return type None
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Notes

Calculate the centrosymmetry parameter for each atom which can be accessed by centrosymmetry at-
tribute. It calculates the degree of inversion symmetry of an atomic environment. Centrosymmetry recalcu-
lates the neighbor using the number method as specified in ¬pyscal.core.System.find_neighbors()
method. This is the ensure that the required number of neighbors are found for calculation of the parameter.

The Greedy Edge Selection (GES) [1] as specified in [2] in used in this method. GES algorithm is imple-
mented in LAMMPS and Ovito. Please see [2] for a detailed description of the algorithms.

References

calculate_chiparams(angles=False)
Calculate the chi param vector for each atom

Parameters angles (bool, optional) – If True, return the list of cosines of all neighbor pairs

Returns angles – list of all cosine values, returned only if angles is True.

Return type array of floats

Notes

This method tries to distinguish between crystal structures by finding the cosines of angles formed by an
atom with its neighbors. These cosines are then historgrammed with bins [-1.0, -0.945, -0.915, -0.755,
-0.705, -0.195, 0.195, 0.245, 0.795, 1.0] to find a vector for each atom that is indicative of its local coor-
dination. Compared to chi parameters from chi_0 to chi_7 in the associated publication, the vector here is
from chi_0 to chi_8. This is due to an additional chi parameter which measures the number of neighbors
between cosines -0.705 to -0.195.

Parameter nlimit specifies the number of nearest neighbors to be included in the analysis to find the cutoff.
If parameter angles is true, an array of all cosine values is returned. The publication further provides
combinations of chi parameters for structural identification which is not implemented here. The calculated
chi params can be accessed using chiparams.

References

calculate_cna(lattice_constant=None)
Calculate the Common Neighbor Analysis indices

Parameters lattice_constant (float, optional) – lattice constant to calculate CNA. If
not specified, adaptive CNA will be used

Returns cna – dict containing the cna signature of the system

Return type dict
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Notes

Performs the common neighbor analysis [1][2] or the adaptive common neighbor analysis [2] and assigns
a structure to each atom.

If lattice_constant is specified, a convential common neighbor analysis is used. If lattice_constant is
not specified, adaptive common neighbor analysis is used. The assigned structures can be accessed by
structure. The values assigned for stucture are 0 Unknown, 1 fcc, 2 hcp, 3 bcc, 4 icosahedral.

References

calculate_disorder(averaged=False, q=6)
Calculate the disorder criteria for each atom

Parameters
• averaged (bool, optional) – If True, calculate the averaged disorder. Default False.

• q (int, optional) – The Steinhardt parameter value over which the bonds have to be
calculated. Default 6.

Returns
Return type None

Notes

Calculate the disorder criteria as introduced in [1]. The disorder criteria value for each atom is defined by,

𝐷𝑗 =
1

𝑁 𝑗
𝑏

𝑁𝑏∑︁
𝑖=1

[𝑆𝑗𝑗 + 𝑆𝑘𝑘 − 2𝑆𝑗𝑘]

where .. math:: S_{ij} = sum_{m=-6}^6 q_{6m}(i) q_{6m}^*(i)

The keyword averaged is True, the disorder value is averaged over the atom and its neighbors. The disorder
value can be accessed using disorder and the averaged version can be accessed using avg_disorder.
For ordered systems, the value of disorder would be zero which would increase and reach one for disordered
systems.

References

calculate_energy(species='Au', pair_style=None, pair_coeff=None, mass=1.0, averaged=False)
Calculate the potential energy of atom using LAMMPS

Parameters
• species (str) – Name of atomic species

• pair_style (str) – lammps pair style

• pair_coeff (str) – lammps pair coeff

• mass (float) – mass of the atoms

• averaged (bool, optional) – Average the energy over neighbors if True default False.

Returns
Return type None
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Notes

Calculates the potential energy per atom using the given potential through LAMMPS. More documentation
coming up. . .

Values can be accessed through pyscal.catom.Atom.energy Averaged values can be accessed through
pyscal.catom.Atom.avg_energy

If averaged is True, the energy is averaged over the neighbors of an atom. If neighbors were calculated
before calling this method, those neighbors are used for averaging. Otherwise neighbors are calculated on
the fly with an adaptive cutoff method.

calculate_entropy(rm, sigma=0.2, rstart=0.001, h=0.001, local=False, M=12, N=6, ra=None,
averaged=False, switching_function=False)

Calculate the entropy parameter for each atom

Parameters
• rm (float) – cutoff distance for integration of entropy parameter in distance units

• sigma (float) – broadening parameter

• rstart (float, optional) – minimum limit for integration, default 0.00001

• h (float, optional) – width for trapezoidal integration, default 0.0001

• local (bool, optional) – if True, use the local density instead of global density default
False

• averaged (bool, optional) – if True find the averaged entropy parameters default False

• switching_function (bool, optional) – if True, use the switching function to aver-
age, otherwise do a simple average over the neighbors. Default False

• ra (float, optional) – cutoff length for switching function used only if switch-
ing_function is True

• M (int, optional) – power for switching function, default 12 used only if switch-
ing_function is True

• N (int, optional) – power for switching function, default 6 used only if switch-
ing_function is True

Returns
Return type None

Notes

The entropy parameters can be accessed by entropy and avg_entropy. For a complete description of the
entropy parameter, see the documentation

The local keyword can be used to use a local density instead of the global one. This method will only work
with neighbor methods that use a cutoff.

calculate_q(q, averaged=False, only_averaged=False, condition=None, clear_condition=False)
Find the Steinhardt parameter q_l for all atoms.

Parameters
• q_l (int or list of ints) – A list of all Steinhardt parameters to be found from 2-12.

• averaged (bool, optional) – If True, return the averaged q values, default False
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• only_averaged (bool, optional) – If True, only calculate the averaged part. default
False

• condition (callable or atom property) – Either function which should take an
Atom object, and give a True/False output or an attribute of atom class which has value
or 1 or 0.

• clear_condition (bool, optional) – clear the condition variable for all atoms

Returns
Return type None

Notes

Enables calculation of the Steinhardt parameters [1] q from 2-12. The type of q values depend on the
method used to calculate neighbors. See the description find_neighbors() for more details. If the
keyword average is set to True, the averaged versions of the bond order parameter [2] is returned. If only
the averaged versions need to be calculated, only_averaged keyword can be set to False.

The neighbors over which the q values are calculated can also be filtered. This is done through the argu-
ment condition which is passed as a parameter. condition can be of two types. The first type is a function
which takes an Atom object and should give a True/False value. condition can also be an Atom attribute or
a value from custom values stored in an atom. See cluster_atoms() for more details. If the condition
is equal for both host atom and the neighbor, the neighbor is considered for calculation of q parameters.
This is slightly different from cluster_atoms() where the condition has to be True for both atoms. con-
dition is only cleared when neighbors are recalculated. Additionally, the keyword clear_condition can also
be used to clear the condition and reset it to 0. By default, condition is applied to both unaveraged and
averaged q parameter calculation. If condition is needed for only averaged q parameters, this function can
be called twice, initially without condition and averaged=False, and then with a condition specified and
averaged=True. This way, the condition will only be applied to the averaged q calculation.

References

calculate_rdf(histobins=100, histomin=0.0, histomax=None)
Calculate the radial distribution function.

Parameters
• histobins (int) – number of bins in the histogram

• histomin (float, optional) – minimum value of the distance histogram. Default 0.0.

• histomax (float, optional) – maximum value of the distance histogram. Default, the
maximum value in all pair distances is used.

Returns
• rdf (array of ints) – Radial distribution function

• r (array of floats) – radius in distance units

calculate_solidneighbors()
Find Solid neighbors of all atoms in the system.

Parameters None –

Returns
Return type None
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Notes

A solid bond is considered between two atoms if the connection between them is greater than 0.6.

calculate_sro(reference_type=1, average=True, shells=2)
Calculate short range order

Parameters
• reference_type (int, optional) – type of the atom to be used a reference. default 1

• average (bool, optional) – if True, average over all atoms of the reference type in the
system. default True.

Returns vec – The short range order averaged over the whole system for atom of the reference
type. Only returned if average is True. First value is SRO of the first neighbor shell and the
second value corresponds to the second nearest neighbor shell.

Return type list of float

Notes

Calculates the short range order for an AB alloy using the approach by Cowley [1]. Short range order is
calculated as,

𝛼𝑖 = 1 − 𝑛𝑖

𝑚𝐴𝑐𝑖

where n_i is the number of atoms of the non reference type among the c_i atoms in the ith shell. m_A is the
concentration of the non reference atom. Please note that the value is calculated for shells 1 and 2 by default.
In order for this to be possible, neighbors have to be found first using the find_neighbors()method. The
selected neighbor method should include the second shell as well. For this purpose method=cutoff can be
chosen with a cutoff long enough to include the second shell. In order to estimate this cutoff, one can use
the calculate_rdf() method.

References

calculate_vorovector(edge_cutoff=0.05, area_cutoff=0.01, edge_length=False)
get the voronoi structure identification vector.

Parameters edge_cutoff (float, optional) – cutoff for edge length. Default 0.05.

area_cutoff [float, optional] cutoff for face area. Default 0.01.

edge_length [bool, optional] if True, a list of unrefined edge lengths are returned. Default false.

Returns vorovector – array of the form (n3, n4, n5, n6)

Return type array like, int
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Notes

Returns a vector of the form (n3, n4, n5, n6), where n3 is the number of faces with 3 vertices, n4 is the
number of faces with 4 vertices and so on. This can be used to identify structures [1] [2].

The keywords edge_cutoff and area_cutoff can be used to tune the values to minimise the effect of ther-
mal distortions. Edges are only considered in the analysis if the edge_length/sum(edge_lengths) is at least
edge_cutoff. Similarly, faces are only considered in the analysis if the face_area/sum(face_areas) is at least
face_cutoff.

References

cluster_atoms(condition, largest=True, cutoff=0)
Cluster atoms based on a property

Parameters
• condition (callable or atom property) – Either function which should take an
Atom object, and give a True/False output or an attribute of atom class which has value
or 1 or 0.

• largest (bool, optional) – If True returns the size of the largest cluster. Default False.

• cutoff (float, optional) – If specified, use this cutoff for calculation of clusters. By
default uses the cutoff used for neighbor calculation.

Returns lc – Size of the largest cluster. Returned only if largest is True.

Return type int

Notes

This function helps to cluster atoms based on a defined property. This property is defined by the user
through the argument condition which is passed as a parameter. condition can be of two types. The first
type is a function which takes an Atom object and should give a True/False value. condition can also be an
Atom attribute or a value from custom values stored in an atom.

When clustering, the code loops over each atom and its neighbors. If the condition is true for both host
atom and the neighbor, they are assigned to the same cluster. For example, a condition to cluster solid atoms
would be,

def condition(atom):
#if both atom is solid
return (atom1.solid)

The same can be done by passing “solid” as the condition argument instead of the above function. Passing
a function allows to evaluate complex conditions, but is slower than passing an attribute.

embed_in_cubic_box()
Embedded the triclinic box in a cubic box

extract_cubic_box(repeat=(3, 3, 3))
Extract a cubic representation of the box from triclinic cell

Parameters repeat (list of ints) – the number of times box should be repeat

Returns
• cubebox (list of list of floats) – cubic box
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• atoms (list of Atom objects) – atoms in the cubic box

find_diamond_neighbors()
Find underlying fcc lattice in diamond

Parameters None –

Returns
Return type None

Notes

This method finds in the underlying fcc/hcp lattice in diamond. It works by the method described in this
publication . For each atom, 4 atoms closest to it are identified. The neighbors of the its neighbors are
further identified and the common neighbors shared with the host atom are selected. These atom will fall
in the underlying fcc lattice for cubic diamond or hcp lattice for hexagonal lattice.

If neighbors are previously calculated, they are reset when this method is used.

find_largestcluster()
Find the largest solid cluster of atoms in the system from all the clusters.

Parameters None –

Returns cluster – the size of the largest cluster

Return type int

Notes

pyscal.core.System.find_clusters() has to be used before using this function.

find_neighbors(method='cutoff', cutoff=None, threshold=2, filter=None, voroexp=1, padding=1.2,
nlimit=6, cells=False, nmax=12, assign_neighbor=True)

Find neighbors of all atoms in the System .

Parameters method ({'cutoff', 'voronoi', 'number'}) – cutoff method finds neighbors of
an atom within a specified or adaptive cutoff distance from the atom. voronoi method finds
atoms that share a Voronoi polyhedra face with the atom. Default, cutoff number method
finds a specified number of closest neighbors to the given atom. Number only populates

cutoff [{ float, ‘sann’, ‘adaptive’}] the cutoff distance to be used for the cutoff based neighbor calculation
method described above. If the value is specified as 0 or adaptive, adaptive method is used. If the
value is specified as sann, sann algorithm is used.

threshold [float, optional] only used if cutoff=adaptive. A threshold which is used as safe limit for
calculation of cutoff.

filter [{‘None’, ‘type’, ‘type_r’}, optional] apply a filter to nearest neighbor calculation. If the filter key-
word is set to type, only atoms of the same type would be included in the neighbor calculations. If
type_r, only atoms of a different type will be included in the calculation. Default None.

voroexp [int, optional] only used if method=voronoi. Power of the neighbor weight used to weight the
contribution of each atom towards Steinhardt parameter values. Default 1.

padding [double, optional] only used if cutoff=adaptive or cutoff=number. A safe padding value
used after an adaptive cutoff is found. Default 1.2.

nlimit [int, optional] only used if cutoff=adaptive. The number of particles to be considered for the
calculation of adaptive cutoff. Default 6.
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nmax [int, optional] only used if cutoff=number. The number of closest neighbors to be found for each
atom. Default 12

Returns
Return type None

Raises
• RuntimeWarning – raised when threshold value is too low. A low threshold value will

lead to ‘sann’ algorithm not converging when finding a neighbor. This function will try to
automatically increase threshold and check again.

• RuntimeError – raised when neighbor search was unsuccessful. This is due to a low
threshold value.

Notes

This function calculates the neighbors of each particle. There are several ways to do this. A complete
description of the methods can be found here.

Method cutoff and specifying a cutoff radius uses the traditional approach being the one in which the
neighbors of an atom are the ones that lie in the cutoff distance around it.

In order to reduce time during the distance sorting during the adaptive methods, pyscal sets an initial guess
for a cutoff distance. This is calculated as,

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 * (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑜𝑥 𝑣𝑜𝑙𝑢𝑚𝑒/𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠)(1/3)

threshold is a safe multiplier used for the guess value and can be set using the threshold keyword.

In Method cutoff, if cutoff='adaptive', an adaptive cutoff is found during runtime for each atom [1].
Setting the cutoff radius to 0 also uses this algorithm. The cutoff for an atom i is found using,

𝑟𝑐(𝑖) = 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 * ((1/𝑛𝑙𝑖𝑚𝑖𝑡) *
𝑛𝑙𝑖𝑚𝑖𝑡∑︁
𝑗=1

(𝑟𝑖𝑗))

padding is a safe multiplier to the cutoff distance that can be set through the keyword padding. nlimit
keyword sets the limit for the top nlimit atoms to be taken into account to calculate the cutoff radius.

In Method cutoff, if cutoff='sann', sann algorithm is used [2]. There are no parameters to tune sann
algorithm.

The second approach is using Voronoi polyhedra which also assigns a weight to each neighbor in the ratio
of the face area between the two atoms. Higher powers of this weight can also be used [3]. The keyword
voroexp can be used to set this weight.

If method os number, instead of using a cutoff value for finding neighbors, a specified number of closest
atoms are found. This number can be set through the argument nmax.

Warning: Adaptive and number cutoff uses a padding over the intial guessed “neighbor distance”.
By default it is 2. In case of a warning that threshold is inadequate, this parameter should be further
increased. High/low value of this parameter will correspond to the time taken for finding neighbors.
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References

find_solids(bonds=0.5, threshold=0.5, avgthreshold=0.6, cluster=True, q=6, cutoff=0, right=True)
Distinguish solid and liquid atoms in the system.

Parameters
• bonds (int or float, optional) – Minimum number of solid bonds for an atom to

be identified as a solid if the value is an integer. Minimum fraction of neighbors of an atom
that should be solid for an atom to be solid if the value is float between 0-1. Default 0.5.

• threshold (double, optional) – Solid bond cutoff value. Default 0.5.

• avgthreshold (double, optional) – Value required for Averaged solid bond cutoff for
an atom to be identified as solid. Default 0.6.

• cluster (bool, optional) – If True, cluster the solid atoms and return the number of
atoms in the largest cluster.

• q (int, optional) – The Steinhardt parameter value over which the bonds have to be
calculated. Default 6.

• cutoff (double, optional) – Separate value used for cluster classification. If not spec-
ified, cutoff used for finding neighbors is used.

• right (bool, optional) – If true, greater than comparison is to be used for finding solid
particles. default True.

Returns solid – Size of the largest solid cluster. Returned only if cluster=True.

Return type int

Notes

The neighbors should be calculated before running this function. Check find_neighbors() method.

bonds define the number of solid bonds of an atom to be identified as solid. Two particles are said to be
‘bonded’ if [1],

𝑠𝑖𝑗 =

6∑︁
𝑚=−6

𝑞6𝑚(𝑖)𝑞*6𝑚(𝑖) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

where threshold values is also an optional parameter.

If the value of bonds is a fraction between 0 and 1, at least that much of an atom’s neighbors should be
solid for the atom to be solid.

An additional parameter avgthreshold is an additional parameter to improve solid-liquid distinction. In
addition to having a the specified number of bonds,

⟨𝑠𝑖𝑗⟩ > 𝑎𝑣𝑔𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

also needs to be satisfied. In case another q value has to be used for calculation of S_ij, it can be set used
the q attribute. In the above formulations, > comparison for threshold and avgthreshold can be changed to
< by setting the keyword right to False.

If cluster is True, a clustering is done for all solid particles. See find_clusters() for more details.

2.4. pyscal reference 69



pyscal Documentation, Release 2.10.14

References

get_atom(index)
Get the Atom object at the queried position in the list of all atoms in the System .

Parameters index (int) – index of required atom in the list of all atoms.

Returns atom – atom object at the queried position.

Return type Atom object

get_concentration()
Return a dict containing the concentration of the system

Parameters None –

Returns condict – dict of concentration values

Return type dict

get_custom(atom, customkeys)
Get a custom attribute from Atom

Parameters
• atom (Atom object) –

• customkeys (list of strings) – the list of keys to be found

Returns vals – array of custom values

Return type list

get_distance(atom1, atom2, vector=False)
Get the distance between two atoms.

Parameters
• atom1 (Atom object) – first atom

• atom2 (Atom object) – second atom

• vector (bool, optional) – If True, the displacement vector connecting the atoms is
also returned. default false.

Returns distance – distance between the first and second atom.

Return type double

Notes

Periodic boundary conditions are assumed by default.

get_qvals(q, averaged=False)
Get the required q_l (Steinhardt parameter) values of all atoms.

Parameters
• q_l (int or list of ints) – required q_l value with l from 2-12

• averaged (bool, optional) – If True, return the averaged q values, default False

Returns qvals – list of q_l of all atoms.

Return type list of floats
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Notes

The function returns a list of q_l values in the same order as the list of the atoms in the system.

identify_diamond(find_neighbors=True)
Identify diamond structure

Parameters find_neighbors (bool, optional) – If True, find 4 closest neighbors

Returns diamondstructure – dict of structure signature

Return type dict

Notes

Identify diamond structure using the algorithm mentioned in [1]. It is an extended CNA method. The
integers 5, 6, 7, 8, 9 and 10 are assigned to the structure variable of the atom. 5 stands for cubic diamond,
6 stands for first nearest neighbors of cubic diamond and 7 stands for second nearest neighbors of cubic
diamond. 8 signifies hexagonal diamond, the first nearest neighbors are marked with 9 and second nearest
neighbors with 10.

References

iter_atoms()
Iter over atoms

read_inputfile(filename, format='lammps-dump', compressed=False, customkeys=None)
Read input file that contains the information of system configuration.

Parameters
• filename (string) – name of the input file.

• format ({'lammps-dump', 'poscar', 'ase', 'mdtraj'}) – format of the input file, in
case of ase the ASE Atoms object

• compressed (bool, optional) – If True, force to read a gz compressed format, default
False.

• customkeys (list) – A list containing names of headers of extra data that needs to be
read in from the input file.

Returns
Return type None

Notes

format keyword specifies the format of the input file. Currently only a lammps-dump and poscar files are
supported. Additionaly, the widely use Atomic Simulation environment (https://wiki.fysik.dtu.dk/ase/ase/
ase.html). mdtraj objects (http://mdtraj.org/1.9.3/) are also supported by using the keyword ‘mdtraj’ for
format. Please note that triclinic boxes are not yet supported for mdtraj format. Atoms object can also be
used directly. This function uses the traj_process() module to process a file which is then assigned to
system.

compressed keyword is not required if a file ends with .gz extension, it is automatically treated as a com-
pressed file.

Triclinic simulation boxes can also be read in.
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If custom_keys are provided, this extra information is read in from input files if available. This information
is not passed to the C++ instance of atom, and is stored as a dictionary. It can be accessed directly as
atom.custom[‘customval’]

remap_atoms(remove_images=True, assign=True, remove_atoms=False, dtol=0.1)
Remap atom back into simulation box

Parameters
• pbc (bool, optional) – If True, remove atoms on borders that are repeated

• assign (bool, optional) – If True, assign atoms to the system, otherwise return.

• remove_atoms (bool, optional) – If True, after the atoms, are remapped, remove those
still outside the box.

• rtol (float, optional) – Tolerance for removing atomic positions. Defaullt 0.1

repeat(reps, atoms=None, ghost=False, scale_box=True)
Replicate simulation cell

Parameters
• reps (list of ints of size 3) – repetitions in each direction

• atoms (list of atoms, optional) – if not provided, use atoms that are assigned

• ghost (bool, optional) – If True, assign the new atoms as ghost instead of actual atoms

reset_neighbors()
Reset the neighbors of all atoms in the system.

Parameters None –

Returns
Return type None

Notes

It is used automatically when neighbors are recalculated.

set_atom(atom)
Return the atom to its original location after modification.

Parameters atom (Atom) – atom to be replaced

Returns
Return type None

Notes

For example, an Atom at location i in the list of all atoms in System can be queried by, atom = System.
get_atom(i), then any kind of modification, for example, the position of the Atom can done by, atom.
pos = [2.3, 4.5, 4.5]. After modification, the Atom can be set back to its position in System by
set_atom().

Although the complete list of atoms can be accessed or set using atoms = sys.atoms, get_atom and
set_atom functions should be used for accessing individual atoms. If an atom already exists at that index
in the list, it will be overwritten and will lead to loss of information.
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set_atom_cutoff(factor=1.0)
Set cutoff for each atom

Parameters factor (float, optional) – factor for multiplication of cutoff value. default 1

Returns
Return type None

Notes

Assign cutoffs for each atom based on the nearest neighbor distance. The cutoff assigned is the average
nearest neighbor distance multiplied by factor.

show(colorby=None, filterby=None)
Plot the system

Parameters
• sys (System object) –

• colorby (string, optional) – property over which the atoms are to be colored. It can
be any attributed of Atom, a custom attribute, or calculated q values which can be accessed
as qx or aqx where x stands for the q number.

• filterby (string, optional) – property over which the atoms are to be filtered before
plotting. It can be any attribute of atom, or a custom value of atom. It should provide a
True or False value.

Returns
Return type None

to_ase(species)
Convert system to an ASE Atoms object

Parameters species (list of string) – The chemical species

Returns
Return type None

to_file(outfile, format='lammps-dump', customkeys=None, customvals=None, compressed=False,
timestep=0, species=None)

Save the system instance to a trajectory file.

Parameters
• outfile (string) – name of the output file

• format (string, {'lammps-dump', 'lammps-data', 'poscar'}) – format of the out-
put file, default lammps-dump Currently only lammps-dump format is supported.

• customkeys (list of strings, optional) – a list of extra atom wise values to be
written in the output file.

• customvals (list or list of lists, optional) – If customkey is specified, cus-
tomvals take an array of the same length as number of atoms, which contains the values to
be written out.

• compressed (bool, optional) – If true, the output is written as a compressed file.

• timestep (int, optional) – timestep to be written to file. default 0
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• species (None, optional) – species of the atoms. Required if any format other than
‘lammps-dump’ is used. Required for convertion to ase object.

Returns
Return type None

Notes

to_file method can handle a number of file formats. The most customizable format is the lammps-dump
which can take a custom options using customkeys and customvals. customkeys will be the header written to
the dump file. It can be any Atom attribute, any property stored in custom variable of the Atom, or calculated
q values which can be given by q4, aq4 etc. External values can also be provided using customvals option.
customvals array should be of the same length as the number of atoms in the system.

For all other formats, ASE is used to write out the file, and hence the species keyword needs to be specified.
If initially, an ASE object was used to create the System, species keyword will already be saved, and need
not be specified. In other cases, species should be a list of atomic species in the System. For example
[“Cu”] or [“Cu”, “Al”], depending on the number of species in the System. In the above case, atoms of
type 1 will be mapped to Cu and of type 2 will be mapped to Al. For a complete list of formats that ASE
can handle, see here .

pyscal.core.test()
A simple function to test if the module works

Parameters None –

Returns works – True if the module works and could create a System and Atom object False other-
wise.

Return type bool

class pyscal.catom.Atom
Bases: pybind11_builtins.pybind11_object

Class to store atom details.

Parameters
• pos (list of floats of length 3) – position of the Atom, default [0,0,0]

• id (int) – id of the Atom, default 0

• type (int) – type of the Atom, default 1

Notes

A pybind11 class for holding the properties of a single atom. Various properties of the atom can be accessed
through the attributes and member functions which are described below in detail. Atoms can be created individ-
ually or directly by reading a file. Check the examples for more details on how atoms are created. For creating
atoms directly from an input file check the documentation of System class.

Although an Atom object can be created independently, Atom should be thought of inherently as members of the
System class. All the properties that define an atom are relative to the parent class. System has a list of all
atoms. All the properties of an atom, hence should be calculated through System .
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Examples

>>> #method 1 - individually
>>> atom = Atom()
>>> #now set positions of the atoms
>>> atom.pos = [23.0, 45.2, 34.2]
>>> #now set id
>>> atom.id = 23
>>> #now set type
>>> atom.type = 1
>>> #Setting through constructor
>>> atom = Atom([23.0, 45.2, 34.2], 23, 1)

References

Creation of atoms.

__init__()

property allaq
list of floats. list of all averaged q values of the atom.

property allq
list of floats. list of all q values of the atom.

property angular
Float. The value of angular parameter A of an atom. The angular parameter measures the tetrahe-
dral coordination of an atom. Meaningful values are only returned if the property is calculated using
calculate_angularcriteria().

property avg_angular
Float. The average angular parameter value. Not used currently.

property avg_disorder
Float. The value of averaged disorder parameter.

property avg_energy
Float. Value of averaged energy.

property avg_entropy
Float. Value of averaged entropy parameter.

property avg_sij
float. Value of averaged s_ij which is used for identification of solid atoms. s_ij is defined by

𝑠𝑖𝑗 =

𝑙∑︁
𝑚=−𝑙

𝑞𝑙𝑚(𝑖)𝑞*𝑙𝑚(𝑖)

property avg_volume
float. Averaged version of the Voronoi volume which is calculated as an average over itself and its neighbors.
Only calculated when the find_neighbors() using the method=’voronoi’ option is used.

property bonds

property centrosymmetry
Float. The value of centrosymmetry parameter.
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property chiparams
Float. The value of chiparameter of an atom. The return value is a vector of length 8. Meaningful values
are only returned if chi params are calculated using calculate_chiparams().

property cluster
int. identification number of the cluster that the atom belongs to.

property cna

property common

property condition
int. condition that specifies if an atom is included in the clustering algorithm or not. Only atoms with the
value of condition=1 will be used for clustering in cluster_atoms().

property coordination
int. coordination number of the atom. Coordination will only be updated after neighbors are calculated
using find_neighbors().

property custom
dict. dictionary specfying custom values for an atom. The module only stores the id, type and position
of the atom. If any extra values need to be stored, they can be stored in custom using atom.custom =
{“velocity”:12}. read_inputfile() can also read in extra atom information. By default, custom values
are treated as string.

property cutoff
double. cutoff used for finding neighbors for each atom.

property disorder
Float. The value of disorder parameter.

property edge_lengths
list of floats. For each face, this vector contains the lengths of edges that make up the Voronoi polyhedra of
the atom. Only calculated when the find_neighbors() using the method=’voronoi’ option is used.

property energy
Float. Value of energy.

property entropy
Float. Value of entropy parameter.

property face_perimeters
list of floats. List consisting of the perimeters of each Voronoi face of an atom. Only calculated when the
find_neighbors() using the method=’voronoi’ option is used.

property face_vertices
list of floats. A list of the number of vertices shared between an atom and its neighbors. Only calculated
when the find_neighbors() using the method=’voronoi’ option is used.

get_q()
Calculate the steinhardt parameter q_l value.

Parameters
• q (int or list of ints) – number of the required q_l - from 2-12

• averaged (bool, optional) – If True, return the averaged q values, If False, return the
non averaged ones default False

Returns q_l – the value(s) of the queried Steinhardt parameter(s).

Return type float or list of floats
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Notes

Please check this link for more details about Steinhardts parameters and the averaged versions.

Meaningful values are only returned if calculate_q() is used.

get_qlm()
Get the q_lm values.

Parameters
• q (int) – number of the required q_l - from 2-12

• averaged (bool, optional) – If True, return the averaged qlm values, If False, return
the non averaged ones default False

Returns
• q_lm (complex vector) – vector of complex numbers.

• Meaningful values are only returned if calculate_q() is used.

property ghost
int. int specifying ghost status of the atom.

property id
int. Id of the atom.

property largest_cluster
bool. True if the atom belongs to the largest cluster, False otherwise. Largest cluster is only identified after
using the cluster_atoms() function.

property loc
int. indicates the position of the atom in the list of all atoms.

property local_angles
List of floats of length 2. List of longitude and colatitude of an atom to its neighbors.

property mask
bool. Mask variable for atom. If mask is true, the atom is ignored from calculations.

property neighbor_distance
List of floats. List of neighbor distances of the atom.

property neighbor_vector
List of floats of length 3. List of vectors connecting an atom to its neighbors.

property neighbor_weights
List of floats. Used to weight the contribution of each neighbor atom towards the value of Steinhardt’s
parameters. By default, each atom has a weight of 1 each. However, if find_neighbors() is used with
method=’voronoi’, each neighbor gets a weight proportional to the area shared between the neighboring
atom and host atom.

property neighbors
List of ints. List of neighbors of the atom. The list contains indices of neighbor atoms which indicate their
position in the list of all atoms.

property next_neighbor_distances
double. cutoff used for finding neighbors for each atom.

property next_neighbors
double. cutoff used for finding neighbors for each atom.
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property pos
List of floats of the type [x, y, z], default [0, 0, 0]. Position of the atom.

set_q()
Set the value of steinhardt parameter q_l.

Parameters
• q (int or list of ints) – number of the required q_l - from 2-12

• val (float or list of floats) – value(s) of Steinhardt parameter(s).

• averaged (bool, optional) – If True, return the averaged q values, If False, return the
non averaged ones default False

Returns
Return type None

property sij
float. Value of s_ij which is used for identification of solid atoms. s_ij is defined by

𝑠𝑖𝑗 =

𝑙∑︁
𝑚=−𝑙

𝑞𝑙𝑚(𝑖)𝑞*𝑙𝑚(𝑖)

property solid
bool. True if the atom is solid, False otherwise. Solid atoms are only identified after using the
find_solids() function.

property sro
Float. The value of short range order parameter.

property structure
int. Indicates the structure of atom. Not used currently.

property surface
bool. True if the atom has at least one liquid neighbor, False otherwise. Surface atoms are only identified
after using the find_solids() function.

property type
int. int specifying type of the atom.

property vertex_numbers
list of floats. For each Voronoi face of the atom, this values includes a List of vertices that constitute the
face. Only calculated when the find_neighbors() using the method=’voronoi’ option is used.

property vertex_positions
list of list of floats. Positions of Voronoi vertices. Only calculated when the find_neighbors() using the
method=’voronoi’ option is used.

property vertex_vectors
list of floats. A list of positions of each vertex of the Voronoi polyhedra of the atom. Only calculated when
the find_neighbors() using the method=’voronoi’ option is used.

property volume
float. Voronoi volume of the atom. The Voronoi volume is only calculated if neighbors are found using the
find_neighbors() using the method=’voronoi’ option.

property vorovector
list of ints. A vector of the form (n3, n4, n5, n6) where n3 is the number of faces with 3 vertices, n4 is the
number of faces with 4 vertices and so on. This can be used to identify structures [1][2]. Vorovector is
calculated if the calculate_vorovector() method is used.
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References

pyscal.crystal_structures module

pyscal module for creating crystal structures.

pyscal.crystal_structures.make_crystal(structure, lattice_constant=1.0, repetitions=None,
ca_ratio=1.633, noise=0)

Create a basic crystal structure and return it as a list of Atom objects and box dimensions.

Parameters
• structure ({'sc', 'bcc', 'fcc', 'hcp', 'diamond', 'a15' or 'l12'}) – type of the

crystal structure

• lattice_constant (float, optional) – lattice constant of the crystal structure, default
1

• repetitions (list of ints of len 3, optional) – of type [nx, ny, nz], repetions of
the unit cell in x, y and z directions. default [1, 1, 1].

• ca_ratio (float, optional) – ratio of c/a for hcp structures, default 1.633

• noise (float, optional) – If provided add normally distributed noise with standard de-
viation noise to the atomic positions.

Returns
• atoms (list of Atom objects) – list of all atoms as created by user input

• box (list of list of floats) – list of the type [[xlow, xhigh], [ylow, yhigh], [zlow, zhigh]] where
each of them are the lower and upper limits of the simulation box in x, y and z directions
respectively.

Examples

>>> atoms, box = make_crystal('bcc', lattice_constant=3.48, repetitions=[2,2,2])
>>> sys = System()
>>> sys.assign_atoms(atoms, box)

pyscal.trajectory module

class pyscal.trajectory.Timeslice(trajectory, blocklist)
Bases: object

Timeslice containing info about a single time slice Timeslices can also be added to each

__init__(trajectory, blocklist)
Initialize instance with data

to_ase(species=None)
Get block as Ase objects

Parameters blockno (int) – number of the block to be read, starts from 0

Returns sys
Return type ASE object
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to_dict()
Get the required block as data

to_file(outfile, mode='w')
Get block as outputfile

Parameters
• outfile (string) – name of output file

• mode (string) – write mode to be used, optional default “w” write also can be “a” to
append.

Returns
Return type None

to_system(customkeys=None)
Get block as pyscal system

Parameters blockno (int) – number of the block to be read, starts from 0

Returns sys – pyscal System

Return type System

class pyscal.trajectory.Trajectory(filename)
Bases: object

A Trajectory class for LAMMPS

__init__(filename)
Initiaze the class

Parameters
• filename (string) – name of the inputfile

• customkeys (list of string) – keys other than position, id that needs to be read in
from the input file

get_block(blockno)
Get a block from the file as raw data

Parameters blockno (int) – number of the block to be read, starts from 0

Returns data – list of strings containing data

Return type list

load(blockno)
Load the data of a block into memory as a dictionary of numpy arrays

Parameters blockno (int) – number of the block to be read, starts from 0

Returns
Return type None
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Notes

When the data of a block is loaded, it is accessible through Trajectory.data[x]. This data can then be
modified. When the block is written out, the modified data is written instead of existing one. But, loaded
data is kept in memory until unloaded using unload method.

unload(blockno)
Unload the data that is loaded to memory using load method

Parameters blockno (int) – number of the block to be read, starts from 0

Returns
Return type None

pyscal.traj_process module

pyscal module containing methods for processing of a trajectory. Methods for reading of input files formats, writing of
output files etc are provided in this module.

pyscal.traj_process.read_file(filename, format='lammps-dump', compressed=False, customkeys=None)
Read input file

Parameters
• filename (string) – name of the input file.

• format ({'lammps-dump', 'poscar', 'ase', 'mdtraj'}) – format of the input file, in case
of ase the ASE Atoms object

• compressed (bool, optional) – If True, force to read a gz compressed format, default
False.

• customkeys (list) – A list containing names of headers of extra data that needs to be read
in from the input file.

Returns
Return type None

pyscal.traj_process.split_trajectory(infile, format='lammps-dump', compressed=False)
Read in a trajectory file and convert it to individual time slices.

Parameters
• filename (string) – name of input file

• format (format of the input file) – only lammps-dump is supported now.

• compressed (bool, optional) – force to read a gz zipped file. If the filename ends with
.gz, use of this keyword is not necessary.

Returns snaps – a list of filenames which contain individual frames from the main trajectory.

Return type list of strings
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Notes

This is a wrapper function around split_traj_lammps_dump function.

pyscal.traj_process.write_file(sys, outfile, format='lammps-dump', compressed=False, customkeys=None,
customvals=None, timestep=0, species=None)

Write the state of the system to a trajectory file.

Parameters
• sys (System object) – the system object to be written out

• outfile (string) – name of the output file

• format (string, optional) – format of the output file

• compressed (bool, default false) – write a .gz format

• customkey (string or list of strings, optional) – If specified, it adds this cus-
tom column to the dump file. Default None.

• customvals (list or list of lists, optional) – If customkey is specified, custom-
vals take an array of the same length as number of atoms, which contains the values to be
written out.

• timestep (int, optional) – Specify the timestep value, default 0

• species (None, optional) – species of the atoms. Required if any format other than
‘lammps-dump’ is used. Required for convertion to ase object.

Returns
Return type None

pyscal.misc module

pyscal.misc.compare_atomic_env(infile, atomtype=2, precision=2, format='poscar', print_results=True,
return_system=False)

Compare the atomic environment of given types of atoms in the inputfile. The comparison is made in terms of
Voronoi volume and Voronoi fingerprint.

Parameters
• infile (string) – name of the inputfile

• atomtype (int, optional) – type of the atom default 2

• precision (float, optional) – precision for comparing Voronoi volumes default 3

• format (string, optional) – format of the input file default poscar

• print_results (bool, optional) – if True, print the results. If False, return the data
instead. default True

• return_system (bool, optional) – if True, return the system object. default False

Returns
• vvx (list of floats) – unique Voronoi volumes. Returned only if print results is False

• vrx (list of strings) – unique Voronoi polyhedra. Returned only if print results is False

• vvc (list of ints) – number of unique quantities specified above. Returned only if print results
is False
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pyscal.misc.find_tetrahedral_voids(infile, format='poscar', print_results=True, return_system=False,
direct_coordinates=True, precision=0.1)

Check for tetrahedral voids in the system

Parameters
• infile (string) – name of the input file

• format (string) – format of the input file, optional default poscar

• print_results (bool, optional) – if True, print the results. If False, return the data
instead. default True

• return_system (bool, optional) – if True, return the system object. default False

• direct_coordinates (bool, optional) – if True, results are provided in direct coordi-
nates default False

• precision (int, optional) – the number of digits to check for distances. default 1

Returns
• types (list of atom types)

• volumes (list of atom volumes)

• pos (list of atom positions)

• sys (system object, returns only if return_sys is True)

2.5 Publications and Projects

2.5.1 Publications using pyscal
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gust 24, 2021.

• Menon, Sarath, Yury Lysogorskiy, Jutta Rogal, and Ralf Drautz. “Automated Free Energy Calculation from
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• Quentino, J. V., and P. A. F. P. Moreira. “Determining Neighborhood Phases in Hard-Sphere Systems Using
Machine Learning.” The European Physical Journal B 94, no. 6 (June 2021): 130..

• Casillas-Trujillo, Luis, Ulf Jansson, Martin Sahlberg, Gustav Ek, Magnus M. Nygård, Magnus H. Sørby, Bjørn
C. Hauback, Igor A. Abrikosov, and Björn Alling. “Interstitial Carbon in Bcc HfNbTiVZr High-Entropy
Alloy from First Principles.” Physical Review Materials 4, no. 12 (December 2, 2020): 123601..

• Menon, Sarath, Grisell Díaz Leines, Ralf Drautz, and Jutta Rogal. “Role of Pre-Ordered Liquid in the Selec-
tion Mechanism of Crystal Polymorphs during Nucleation.” The Journal of Chemical Physics 153, no. 10
(September 14, 2020): 104508..

• Gao, Xueyun, Haiyan Wang, Lei Xing, Cainv Ma, and Huiping Ren. “Evolution of Local Atomic Structure
during Solidification of Fe-RE (RE=La, Ce) Alloy.” Journal of Non-Crystalline Solids 542 (August 2020):
120109..

• Menon, Sarath, Grisell Leines, and Jutta Rogal. “Pyscal: A Python Module for Structural Analysis of Atomic
Environments.” Journal of Open Source Software 4, no. 43 (November 1, 2019): 1824..

2.5. Publications and Projects 83

http://arxiv.org/abs/2108.10601
http://arxiv.org/abs/2108.10601
http://arxiv.org/abs/2107.08980
https://doi.org/10.1140/epjb/s10051-021-00140-9
https://doi.org/10.1103/PhysRevMaterials.4.123601
https://doi.org/10.1063/5.0017575
https://doi.org/10.1063/5.0017575
https://doi.org/10.1016/j.jnoncrysol.2020.120109
https://doi.org/10.1016/j.jnoncrysol.2020.120109
https://doi.org/10.21105/joss.01824


pyscal Documentation, Release 2.10.14

2.5.2 Projects using pyscal

• calphy : A Python library and command line interface for automated free energy calculations.

• pyiron : pyiron - an integrated development environment (IDE) for computational materials science.

• Automated melting temperature calculation using Pyiron : A fully automated approach to determine the melting
temperature of crystalline materials.

• Pyscal interactive session in Ab initio Description of Iron and Steel (ADIS2020): Diffusion and Precipitation
workshop

2.6 Support, contributing and extending

pyscal welcomes and appreciates contribution and extension to the module. Rather than local modifications, we request
that the modifications be submitted through a pull request, so that the module can be continuously improved.

2.6.1 Reporting and fixing bugs

In case a bug is found in the module, it can be reported on the issues page of the repository. After clicking on the new
issue button, there is template already provided for Bug report. Please choose this and make sure the necessary fields
are filled. Once a bug is reported, the status can once again monitored on the issues page. Additionally, you are of
course very welcome to fix any existing bugs.

2.6.2 New features

If you have an idea for new feature, you can submit a feature idea through the issues page of the repository. After
choosing new issue, please choose the template for feature request. As much as information as you can provide about
the new feauture would be greatly helpful. Additionally, you could also work on feature requests already on the issues
page. The following instructions will help you get started with local feature development.

Setting up local environment

1. The first step is to fork pyscal. A detailed tutorial on forking can be found here. After forking, clone the repository
to your local machine.

2. We recommend creating a virtual environment to test new features or improvements to features. See this link for
help on managing environments.

3. Once the environment is set up, you can create a new branch for your feature by git checkout -b
new_feauture.

4. Now implement the necessary feature.

5. Once done, you can reinstall pyscal by python setup.py install. After that please make sure that the exist-
ing tests work by running pytest tests/ from the main module folder.

6. If the tests work, you are almost done! If the new feature is not covered in existing tests, you can to write a new
test in the tests folder. pyscal uses pytest for tests. This link will help you get started.

7. Add the necessary docstrings for the new functions implemented. pyscal uses the numpy docstring format for
documentation.

8. Bonus task: Set up few examples that document how the feature works in the docs/source/ folder and link it
to the examples section.
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9. Final step - Submit a pull request through github. Before you submit, please make sure that the new feature is
documented and has tests. Once the request is submitted, automated tests would be done. Your pull request will
fail the tests if - the unit tests fail, or if the test coverage falls below 80%. If all tests are successful, your feauture
will be incorporated to pyscal and your contributions will be credited.

If you have trouble with any of the steps, or you need help, please send an email and we will be happy to help! All of
the contributions are greatly appreciated and will be credited in Developers/Acknowledgements page.

2.7 Help and support

In case of bugs and feature improvements, you are welcome to create a new issue on the github repo. You are also
welcome to fix a bug or implement a feature. Please see the extending and contributing section for more details.

Any other questions or suggestions are welcome, please contact us.

2.8 Citing the code

If you use pyscal in your work, the citation of the following article will be greatly appreciated:

Sarath Menon, Grisell Díaz Leines and Jutta Rogal (2019). pyscal: A python module for structural analysis of atomic
environments. Journal of Open Source Software, 4(43), 1824, <https://doi.org/10.21105/joss.01824

Click to copy citation in bib format.
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2.10 License

2.10.1 pyscal License

pyscal uses the BSD 3-Clause New License . A full description is available in the above link or in the repository.

In addition, pyscal license of other codes that pyscal uses are given below-

2.10.2 Voro++ license

Voro++ Copyright (c) 2008, The Regents of the University of California, through Lawrence Berkeley National Labo-
ratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code ("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.
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2.10.3 pybind 11 license

Copyright (c) 2016 Wenzel Jakob (wenzel.jakob@epfl.ch), All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code ("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without imposing a separate written license agreement
for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to
install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such
enhancements or derivative works thereof, in binary and source code form.

2.10.4 sphinx theme license

Copyright (c) 2007-2013 by the Sphinx team (see AUTHORS file). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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