

pyscal- A python module for structural analysis of atomic environments

[image: _images/srmnitc.pyscal]
 [https://dev.azure.com/sarathrmenon/pyscal/_build/latest?definitionId=1&branchName=master][image: _images/badge.svg]
 [https://codecov.io/gh/srmnitc/pyscal][image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/srmnitc/pybop/master?filepath=examples%2F][image: _images/conda.svg]
 [https://anaconda.org/conda-forge/pyscal][image: _images/pyscal.svg]
 [https://conda.anaconda.org/pyscal][image: _images/status.svg]
 [https://joss.theoj.org/papers/168eca482155601dc517523899527a4e][image: _images/pyscal1.svg]
 [https://anaconda.org/conda-forge/pyscal]pyscal is a python module for the calculation of local atomic
structural environments including Steinhardt’s bond orientational order
parameters [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.784]
during post-processing of atomistic simulation data. The core
functionality of pyscal is written in C++ with python wrappers using
pybind11 [https://pybind11.readthedocs.io/en/stable/intro.html]
which allows for fast calculations with possibilities for easy expansion
in python.

Steinhardt’s order parameters are widely used for identification of
crystal
structures [https://aip.scitation.org/doi/full/10.1063/1.4774084].
They are also used to identify if an atom is solid or
liquid [https://link.springer.com/chapter/10.1007/b99429]. pyscal is
inspired by
BondOrderAnalysis [https://homepage.univie.ac.at/wolfgang.lechner/bondorderparameter.html]
code, but has since incorporated many additions and modifications.
pyscal module includes the following functionality-

Highlights

	fast and efficient calculations using C++ and expansion using python.

	calculation of Steinhardt’s order parameters and their averaged
version [https://aip.scitation.org/doi/full/10.1063/1.2977970] and
disorder parameters [https://doi.org/10.1063/1.3656762].

	links with Voro++ [http://math.lbl.gov/voro++/] code, for
calculation of Steinhardt parameters weighted using face area of
Voronoi
polyhedra [https://aip.scitation.org/doi/full/10.1063/1.4774084].

	classification of atoms as solid or
liquid [https://link.springer.com/chapter/10.1007/b99429].

	clustering of particles based on a user defined property.

	methods for calculating radial distribution function, voronoi volume
of particles, number of vertices and face area of voronoi polyhedra
and coordination number.

	calculation of angular parameters such as for identification of
diamond
structure [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.15717]
and Ackland-Jones [https://doi.org/10.1103/PhysRevB.73.054104]
angular parameters.

	Centrosymmetry
parameter [https://doi.org/10.1103/PhysRevB.58.11085] for
identification of defects.

	Adaptive common neighbor
analysis [https://iopscience.iop.org/article/10.1088/0965-0393/20/4/045021]
for identification of crystal structures.

Documentation

	Download and Install
	Downloads
	Source code

	Documentation

	Publication

	Getting started
	Trying pyscal

	Installation
	Supported operating systems

	Installation using conda

	Quick installation

	Installation using pip

	Installation from the repository

	Using a conda environment

	Dependencies

	Tests

	News and updates

	Methods and examples
	Methods
	Methods to calculate neighbors of a particle
	Fixed cutoff method

	Adaptive cutoff methods
	Solid angle based nearest neighbor algorithm (SANN)

	Adaptive cutoff method

	Voronoi tessellation

	References

	Steinhardt’s parameters
	Averaged Steinhardt’s parameters

	Voronoi weighted Steinhardt’s parameters

	References

	Classification of atoms as solid or liquid
	References

	Disorder parameter
	References

	Angular parameters
	Angular criteria for identification of diamond structure

	\(\chi\) parameters for structural identification

	References

	Voronoi tessellation to identify local structures
	References

	Centrosymmetry parameter
	References

	Entropy - Enthalpy parameters
	Entropy fingerprint

	References

	Examples
	Getting started with pyscal
	The System class

	The Atom class

	Combining System and Atom

	Reading in an input file

	Calculating coordination numbers
	Read in a file

	Calculating neighbors
	Cutoff method

	Adaptive cutoff methods

	Voronoi method

	Finally..

	Calculating bond orientational order parameters
	Perfect structures
	Finding the cutoff distance

	Steinhardt’s parameters - cutoff neighbor method

	Structures with thermal vibrations
	cutoff method

	Analyzing a lammps trajectory
	Adding a clustering condition

	Using ASE

	Disorder variable

	Distinction of solid liquid atoms and clustering
	Clustering algorithm
	Clustering based on a custom property

	Voronoi parameters
	Voronoi volume

	Angular parameter
	Create structures

	\(\chi\) parameters

	Centrosymmetry parameter

	Cowley short range order parameter

	Entropy parameters

	Calculating energy
	Interatomic potentials

	Entropy and enthalpy parameters

	Visualizing System objects
	For Jupyter Notebooks

	For Jupyter Lab

	pyscal Trajectory

	pyscal reference
	pyscal Reference
	pyscal.core module

	pyscal.crystal_structures module

	pyscal.trajectory module

	pyscal.traj_process module

	pyscal.misc module

	Publications and Projects
	Publications using pyscal

	Projects using pyscal

	Support, contributing and extending
	Reporting and fixing bugs

	New features
	Setting up local environment

	Help and support

	Citing the code

	Acknowledgements
	Developer

	Contributers

	Acknowledgements

	License
	pyscal License

	Voro++ license

	pybind 11 license

	sphinx theme license

Download and Install

	Downloads
	Source code

	Documentation

	Publication

	Getting started
	Trying pyscal

	Installation
	Supported operating systems

	Installation using conda

	Quick installation

	Installation using pip

	Installation from the repository

	Using a conda environment

	Dependencies

	Tests

Downloads

The source code is available in latest stable or release versions. We
recommend using the latest stable version for all updated features.

Source code

	latest stable version of pyscal
(tar.gz) [https://github.com/srmnitc/pyscal/archive/master.zip]

	release version (zip) [https://doi.org/10.5281/zenodo.3522376]

Documentation

	PDF
version [https://readthedocs.org/projects/pyscal/downloads/pdf/latest/]

	Epub
version [https://readthedocs.org/projects/pyscal/downloads/epub/latest/]

Publication

	Publication [https://joss.theoj.org/papers/10.21105/joss.01824]

	citation [https://joss.theoj.org/papers/10.21105/joss.01824#]

Getting started

Trying pyscal

You can try some examples provided with pyscal using
Binder [https://mybinder.org/] without installing the package. Please
use this
link [https://mybinder.org/v2/gh/srmnitc/pyscal/master?urlpath=lab] to
try the package.

Installation

Supported operating systems

pyscal can be installed on Linux, Mac OS and Windows based systems.

Installation using conda [https://anaconda.org]

pyscal can be installed directly using
Conda [https://docs.conda.io/en/latest/] from the conda-forge
channel [https://conda-forge.org/] by the following statement-

conda install -c conda-forge pyscal

This is the recommended way to install if you have an
Anaconda [https://www.anaconda.com/] distribution.

The above command installs the latest release
version [https://github.com/srmnitc/pyscal/releases] of pyscal and works
on all three operating systems.

pyscal is no longer maintained for Python 2. Although quick installation method might work for Python 2, all features may not work as expected.

Quick installation

pyscal can be installed using the following steps-

	Download an archive of the pyscal library from
here [https://pyscal.readthedocs.io/en/latest/download.html].

	Extract the downloaded version. From the extracted folder, run,
python setup.py install --user

Pyscal can be installed system-wide using `python setup.py install`.

Installation using pip

pyscal is not available on pip directly. However pyscal can be installed
using pip by

pip install git+https://github.com/srmnitc/pyscal

Installation from the repository

pyscal can be built from the repository by-

git clone https://github.com/srmnitc/pyscal.git
cd pyscal
python setup.py install --user

Using a conda environment

pyscal can also be installed in a conda environment, making it easier to
manage dependencies. A python3 Conda environment can be created by,

conda create -n myenv python=3

Once created, the environment can be activated using,

conda activate myenv

In case Cmake and C++11 are not available, these can be installed using,

(myenv) conda install -c anaconda gcc
(myenv) conda install -c anaconda cmake

Now the pyscal repository can be cloned and the module can be installed.
Python dependencies are installed automatically.

(myenv) git clone https://github.com/srmnitc/pyscal.git
(myenv) cd pyscal
(myenv) python setup.py install

A good guide on managing Conda environments is available
[here](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html).

Dependencies

Dependencies for the C++ part

	Cmake [https://cmake.org/]

	C++ 11

Dependencies for the python part

	numpy [https://numpy.org/]

	ase [https://wiki.fysik.dtu.dk/ase/]

Optional dependencies

	pytest [https://docs.pytest.org/en/latest/]

	matplotlib [https://matplotlib.org/]

Tests

In order to see if the installation worked, the following commands can
be tried-

import pyscal.core as pc
pc.test()

The above code does some minimal tests and gives a value of True if
pyscal was installed successfully. However, pyscal also contains
automated tests which use the
pytest [https://docs.pytest.org/en/latest/] python library, which can
be installed by pip install pytest. The tests can be run by executing
the command pytest tests/ from the main code directory.

It is good idea to run the tests to check if everything is installed
properly.

News and updates

	November 21, 2019

 Methods and examples

Methods and examples

	Methods
	Methods to calculate neighbors of a particle
	Fixed cutoff method

	Adaptive cutoff methods
	Solid angle based nearest neighbor algorithm (SANN)

	Adaptive cutoff method

	Voronoi tessellation

	References

	Steinhardt’s parameters
	Averaged Steinhardt’s parameters

	Voronoi weighted Steinhardt’s parameters

	References

	Classification of atoms as solid or liquid
	References

	Disorder parameter
	References

	Angular parameters
	Angular criteria for identification of diamond structure

	\(\chi\) parameters for structural identification

	References

	Voronoi tessellation to identify local structures
	References

	Centrosymmetry parameter
	References

	Entropy - Enthalpy parameters
	Entropy fingerprint

	References

	Examples
	Getting started with pyscal
	The System class

	The Atom class

	Combining System and Atom

	Reading in an input file

	Calculating coordination numbers
	Read in a file

	Calculating neighbors
	Cutoff method

	Adaptive cutoff methods

	Voronoi method

	Finally..

	Calculating bond orientational order parameters
	Perfect structures
	Finding the cutoff distance

	Steinhardt’s parameters - cutoff neighbor method

	Structures with thermal vibrations
	cutoff method

	Analyzing a lammps trajectory
	Adding a clustering condition

	Using ASE

	Disorder variable

	Distinction of solid liquid atoms and clustering
	Clustering algorithm
	Clustering based on a custom property

	Voronoi parameters
	Voronoi volume

	Angular parameter
	Create structures

	\(\chi\) parameters

	Centrosymmetry parameter

	Cowley short range order parameter

	Entropy parameters

	Calculating energy
	Interatomic potentials

	Entropy and enthalpy parameters

	Visualizing System objects
	For Jupyter Notebooks

	For Jupyter Lab

	pyscal Trajectory

 Methods

Methods

	Methods to calculate neighbors of a particle
	Fixed cutoff method

	Adaptive cutoff methods
	Solid angle based nearest neighbor algorithm (SANN)

	Adaptive cutoff method

	Voronoi tessellation

	References

	Steinhardt’s parameters
	Averaged Steinhardt’s parameters

	Voronoi weighted Steinhardt’s parameters

	References

	Classification of atoms as solid or liquid
	References

	Disorder parameter
	References

	Angular parameters
	Angular criteria for identification of diamond structure

	\(\chi\) parameters for structural identification

	References

	Voronoi tessellation to identify local structures
	References

	Centrosymmetry parameter
	References

	Entropy - Enthalpy parameters
	Entropy fingerprint

	References

 Methods to calculate neighbors of a particle

Methods to calculate neighbors of a particle

pyscal includes different methods to explore the local environment of a particle that rely on the calculation of nearest neighbors. Various approaches to compute the neighbors of particles are discussed here.

Fixed cutoff method

The most common method to calculate the nearest neighbors of an atom is using a cutoff radius. The neighborhood of an atom for calculation of Steinhardt’s parameters {cite}``Steinhardt1983`` is often carried out using this method. Commonly, a cutoff is selected as the first minimum of the radial distribution functions. Once a cutoff is selected, the neighbors of an atom are those that fall within this selected radius. The following code snippet will use the cutoff method to calculate neighbors.
In this example, conf.dump is assumed to be the input configuration of the system. A cutoff radius of 3 is assumed for calculation of neighbors.

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=3)

Adaptive cutoff methods

A fixed cutoff radius can introduce limitations to explore the local environment of the particle in some cases:

	At finite temperatures, when thermal fluctuations take place, the selection of a fixed cutoff may result in an inaccurate description of the local environment.

	If there is more than one structure present in the system, for example, bcc and fcc, the selection of cutoff such that it includes the first shell of both structures can be difficult.

In order to achieve a more accurate description of the local environment, various adaptive approaches have been proposed. Two of the methods implemented in the module are discussed below.

Solid angle based nearest neighbor algorithm (SANN)

SANN algorithm {cite}``VanMeel2012`` determines the cutoff radius by counting the solid angles around an atom and equating it to \(4\pi\). The algorithm solves the following equation iteratively.

\[R_i^{(m)} = \frac{\sum_{j=1}^m r_{i,j}}{m-2} < r_{i, m+1}\]

where \(i\) is the host atom, \(j\) are its neighbors with \(r_{ij}\) is the distance between atoms \(i\) and \(j\). \(R_i\) is the cutoff radius for each particle \(i\) which is found by increasing the neighbor of neighbors \(m\) iteratively. For a description of the algorithm and more details, please check the reference {cite}``VanMeel2012``. SANN algorithm can be used to find the neighbors by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='sann')

Since SANN algorithm involves sorting, a sufficiently large cutoff is used in the beginning to reduce the number entries to be sorted. This parameter is calculated by,

\[r_{initial} = \mathrm{threshold} \times \bigg(\frac{\mathrm{Simulation~box~volume}}{\mathrm{Number~of~particles}}\bigg)^{\frac{1}{3}}\]

a tunable threshold parameter can be set through function arguments.

Adaptive cutoff method

An adaptive cutoff specific for each atom can also be found using an algorithm similar to adaptive common neighbor analysis {cite}``Stukowski2012``. This adaptive cutoff is calculated by first making a list of all neighbor distances for each atom similar to SANN method. Once this list is available, then the cutoff is calculated from,

\[r_{cut}(i) = \mathrm{padding}\times \bigg(\frac{1}{\mathrm{nlimit}} \sum_{j=1}^{\mathrm{nlimit}} r_{ij} \bigg)\]

This method can be chosen by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')

The padding and nlimit parameters in the above equation can be tuned using the respective keywords.

Either of the adaptive method can be used to find neighbors, which can then be used to calculate Steinhardt’s parameters or their averaged version.

Voronoi tessellation

Voronoi tessellation [https://en.wikipedia.org/wiki/Voronoi_diagram] provides a completely parameter free geometric approach for calculation of neighbors. Voro++ [http://math.lbl.gov/voro++/] code is used for Voronoi tessellation. Neighbors can be calculated using this method by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')

Finding neighbors using Voronoi tessellation also calculates a weight for each neighbor. The weight of a neighbor \(j\) towards a host atom \(i\) is given by,

\[W_{ij} = \frac{A_{ij}}{\sum_{j=1}^N A_{ij}}\]

where \(A_{ij}\) is the area of Voronoi facet between atom \(i\) and \(j\), \(N\) are all the neighbors identified through Voronoi tessellation. This weight can be used later for calculation of weighted Steinhardt’s parameters. Optionally, it is possible to choose the exponent for this weight. Option voroexp is used to set this option. For example if voroexp=2, the weight would be calculated as,

\[W_{ij} = \frac{A_{ij}^2}{\sum_{j=1}^N A_{ij}^2}\]

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

 Steinhardt’s parameters

Steinhardt’s parameters

Steinhardt’s bond orientational order parameters {cite}``Steinhardt1983`` are a set of parameters based on spherical harmonics [https://en.wikipedia.org/wiki/Spherical_harmonics] to explore the local atomic environment. These parameters have been used extensively for various uses such as distinction of crystal structures, identification of solid and liquid atoms and identification of defects {cite}``Steinhardt1983``.

These parameters, which are rotationally and translationally invariant are defined by,

\[q_l (i) = \Big(\frac{4\pi}{2l+1} \sum_{m=-l}^l | q_{lm}(i) |^2 \Big)^{\frac{1}{2}}\]

where,

\[q_{lm} (i) = \frac{1}{N(i)} \sum_{j=1}^{N(i)} Y_{lm}(\pmb{r}_{ij})\]

in which \(Y_{lm}\) are the spherical harmonics and \(N(i)\) is the number of neighbours of particle \(i\), \(\pmb{r}_{ij}\) is the vector connecting particles \(i\) and \(j\), and \(l\) and \(m\) are both intergers with \(m \in [-l,+l]\). Various parameters have found specific uses, such as \(q_2\) and \(q_6\) for identification of crystallinity, \(q_6\) for identification of solidity, and \(q_4\) and \(q_6\) for distinction of crystal
structures {cite}``Mickel2013``. Commonly this method uses a cutoff radius to identify the neighbors of an atom. The cutoff can be chosen based on different methods available. Once the cutoff is chosen and neighbors are calculated, the calculation of Steinhardt’s parameters is straightforward.

sys.calculate_q([4, 6])
q = sys.get_qvals([4, 6])

Averaged Steinhardt’s parameters

At high temperatures, thermal vibrations affect the atomic positions. This in turn leads to overlapping distributions of \(q_l\) parameters, which makes the identification of crystal structures difficult. To address this problem, the averaged version \(\bar{q}_l\) of Steinhardt’s parameters was introduced by Lechner and Dellago {cite}``Lechner2008``. \(\bar{q}_l\) is given by,

\[\bar{q}_l (i) = \Big(\frac{4\pi}{2l+1} \sum_{m=-l}^l \Big| \frac{1}{\tilde{N}(i)} \sum_{k=0}^{\tilde{N}(i)} q_{lm}(k) \Big|^2 \Big)^{\frac{1}{2}}\]

where the sum from \(k=0\) to \(\tilde{N}(i)\) is over all the neighbors and the particle itself. The averaged parameters takes into account the first neighbor shell and also information from the neighboring atoms and thus reduces the overlap between the distributions. Commonly \(\bar{q}_4\) and \(\bar{q}_6\) are used in identification of crystal structures. Averaged versions can be calculated by setting the keyword averaged=True as follows.

sys.calculate_q([4, 6], averaged=True)
q = sys.get_qvals([4, 6], averaged=True)

Voronoi weighted Steinhardt’s parameters

In order to improve the resolution of crystal structures Mickel et al {cite}``Mickel2013`` proposed weighting the contribution of each neighbor to the Steinhardt parameters by the ratio of the area of the Voronoi facet shared between the neighbor and host atom. The weighted parameters are given by,

\[q_{lm} (i) = \frac{1}{N(i)} \sum_{j=1}^{N(i)} \frac{A_{ij}}{A} Y_{lm}(\pmb{r}_{ij})\]

where \(A_{ij}\) is the area of the Voronoi facet between atoms \(i\) and \(j\) and \(A\) is the sum of the face areas of atom \(i\). In pyscal, the area weights are already assigned during the neighbor calculation phase when the Voronoi method is used to calculate neighbors in the System.find_neighbors [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.core.System.find_neighbors]. The Voronoi weighted Steinhardt’s parameters can be calculated as follows,

sys.find_neighbors(method='voronoi')
sys.calculate_q([4, 6])
q = sys.get_qvals([4, 6])

The weighted Steinhardt’s parameters can also be averaged as described above. Once again, the keyword averaged=True can be used for this purpose.

sys.find_neighbors(method='voronoi')
sys.calculate_q([4, 6], averaged=True)
q = sys.get_qvals([4, 6], averaged=True)

It was also proposed that higher powers of the weight {cite}``Haeberle2019`` \(\frac{A_{ij}^{\alpha}}{A(\alpha)}\) where \(\alpha = 2, 3\) can also be used, where \(A(\alpha) = \sum_{j=1}^{N(i)} A_{ij}^{\alpha}\) The value of this can be set using the keyword voroexp during the neighbor calculation phase.

sys.find_neighbors(method='voronoi', voroexp=2)

If the value of voroexp is set to 0, the neighbors would be found using Voronoi method, but the calculated Steinhardt’s parameters will not be weighted.

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

 Classification of atoms as solid or liquid

Classification of atoms as solid or liquid

pyscal can also be used to distinguish solid and liquid atoms. The classification is based on Steinhardt’s parameters [https://pyscal.readthedocs.io/en/latest/steinhardtparameters.html], specifically \(q_6\). The method defines two neighboring atoms \(i\) and \(j\) as having solid bonds if a parameter \(s_{ij}\) {cite}``Auer2005``,

\[s_{ij} = \sum_{m=-6}^6 q_{6m}(i) q_{6m}^*(j) \geq \mathrm{threshold}\]

Additionally, a second order parameter is used to improve the distinction in solid-liquid boundaries {cite}``Bokeloh2014``. This is defined by the criteria,

\[\langle s_{ij} \rangle > \mathrm{avgthreshold}\]

If a particle has \(n\) number of bonds with \(s_{ij} \geq \mathrm{threshold}\) and the above condition is also satisfied, it is considered as a solid. The solid atoms can be clustered to find the largest solid cluster of atoms.

Finding solid atoms in liquid start with reading in a file and calculation of neighbors.

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=4)

Once again, there are various methods for finding neighbors. Please check here for details on neighbor calculation methods. Once the neighbors are calculated, solid atoms can be found directly by,

sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=True)

bonds set the number of minimum bonds a particle should have (as defined above), threshold and avgthreshold are the same quantities that appear in the equations above. Setting the keyword cluster to True returns the size of the largest solid cluster. It is also possible to check if each atom is solid or not.

atoms = sys.atom
solids = [atom.solid for atom in atoms]

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

 Disorder parameter

Disorder parameter

Kawasaki and Onuki {cite}``Kawasaki2011`` proposed a disorder variable based on Steinhardt’s order paramaters which can be used to distinguish between ordered and disordered structures

The disorder variable for an atom is defined as,

\[D_j = \frac{1}{n_b^j} \sum_{k \in neighbors } [S_{jj} + S_{kk} - 2S_{jk}]\]

where S is given by,

\[S_{jk} = \sum_{-l \leq m \leq l} q_{lm}^j (q_{lm}^k)^*\]

l = 6 was used in the original publication as it is a good indicator of crystallinity. However, l = 4 can also be used for treating bcc structures. An averaged disorder parameter for each atom can also be calculated in pyscal,

\[\bar{D}_j = \frac{1}{n_b^j} \sum_{k \in neighbors } D_j\]

In pyscal, disorder parameter can be calculated by the following code-block,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=0)
sys.calculate_q(6)
sys.calculate_disorder(averaged=True, q=6)

The value of q can be replaced with whichever is required from 2-12. The calculated values can be accessed by, Atom.disorder [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.disorder] and Atom.avg_disorder [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.avg_disorder] attributes.

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

 Angular parameters

Angular parameters

Angular criteria for identification of diamond structure

Angular parameter introduced by Uttormark et al {cite}``Uttormark1993`` is used to measure the tetrahedrality of local atomic structure. An atom belonging to diamond structure has four nearest neighbors which gives rise to six three body angles around the atom. The angular parameter \(A\) is then defined as,

\[A = \sum_{i=1}^6 (\cos(\theta_i)+\frac{1}{3})^2\]

An atom belonging to diamond structure would show the value of angular params close to 0. Angular parameter can be calculated in pyscal using the following method -

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')
sys.calculate_angularcriteria()

The calculated angular criteria value can be accessed for each atom using Atom.angular [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.angular].

\(\chi\) parameters for structural identification

\(\chi\) parameters introduced by Ackland and Jones {cite}``Ackland2006`` measures all local angles created by an atom with its neighbors and creates a histogram of these angles to produce vector which can be used to identify structures. After finding the neighbors of an atom, \(\cos \theta_{ijk}\) for atoms j and k which are neighbors of i is calculated for all combinations of i, j and k. The set of all calculated cosine values are then added to a histogram with the following bins -
[-1.0, -0.945, -0.915, -0.755, -0.705, -0.195, 0.195, 0.245, 0.795, 1.0]. Compared to \(\chi\) parameters from \(\chi_0\) to \(\chi_7\) in the associated publication, the vector calculated in pyscal contains values from \(\chi_0\) to \(\chi_8\) which is due to an additional \(\chi\) parameter which measures the number of neighbors between cosines -0.705 to -0.195. The \(\chi\) vector is characteristic of the local atomic environment and can be used to identify crystal
structures, details of which can be found in the publication[^2].

\(\chi\) parameters can be calculated in pyscal using,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')
sys.calculate_chiparams()

The calculated values for each atom can be accessed using Atom.chiparams [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.chiparams].

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

 Voronoi tessellation to identify local structures

Voronoi tessellation to identify local structures

Voronoi tessellation can be used for identification of local structure by counting the number of faces of the Voronoi polyhedra of an atom {cite}``Finney1970,Tanemura1977``. For each atom a vector \(\langle n_3~n_4~n_5~n_6 \rangle\) can be calculated where \(n_3\) is the number of Voronoi faces of the associated Voronoi polyhedron with three vertices, \(n_4\) is with four vertices and so on. Each perfect crystal structure such as a signature vector, for example, bcc can be identified
by \(\langle 0~6~0~8 \rangle\) and fcc can be identified using \(\langle 0~12~0~0 \rangle\). It is also a useful tool for identifying icosahedral structure which has the fingerprint \(\langle 0~0~12~0 \rangle\). In pyscal, the voronoi vector can be calculated using,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_vorovector()

The vector for each atom can be accessed using Atom.vorovector [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.vorovector]. Furthermore, the associated Voronoi volume of the polyhedron, which may be indicative of the local structure, is also automatically calculated when finding neighbors using System.find_neighbors [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.core.System.find_neighbors]. This value for each atom can be accessed by
Atom.volume [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.volume]. An averaged version of the volume, which is averaged over the neighbors of an atom can be accessed using Atom.avg_volume [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.avg_volume].

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

 Centrosymmetry parameter

Centrosymmetry parameter

Centrosymmetry parameter (CSP) was introduced by Kelchner et al. {cite}``Kelchner1998`` to identify defects in crystals. The parameter measures the loss of local symmetry. For an atom with \(N\) nearest neighbors, the parameter is given by,

\[\mathrm{CSP} = \sum_{i=1}^{N/2} \big | \textbf{r}_i + \textbf{r}_{i+N/2} \big |^2\]

\(\textbf{r}_i\) and \(\textbf{r}_{i+N/2}\) are vectors from the central atom to two opposite pairs of neighbors. There are two main methods to identify the opposite pairs of neighbors as described in this publication [https://arxiv.org/abs/2003.08879]. The first of the approaches is called Greedy Edge Selection (GES) {cite}``Stukowski2012`` and is implemented in LAMMPS [https://lammps.sandia.gov/] and Ovito [https://www.ovito.org/]. GES algorithm calculates a weight
\(w_{ij} = |\textbf{r}_i + \textbf{r}_j|\) for all combinations of neighbors around an atom and calculates CSP over the smallest \(N/2\) weights.

A centrosymmetry parameter calculation using GES algorithm can be carried out as follows-

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12)

nmax parameter specifies the number of nearest neighbors to be considered for the calculation of CSP. The second algorithm is called the Greedy Vertex Matching {cite}``Bulatov2006`` and is implemented in AtomEye [http://li.mit.edu/Archive/Graphics/A/] and Atomsk [https://atomsk.univ-lille.fr/]. This algorithm orders the neighbors atoms in order of increasing distance from the central atom. From this list, the closest neighbor is paired with its lowest weight partner and both atoms
removed from the list. This process is continued until no more atoms are remaining in the list. CSP calculation using this algorithm can be carried out by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12, algorithm = "gvm")

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

 Entropy - Enthalpy parameters

Entropy - Enthalpy parameters

Entropy fingerprint

The entropy parameter was introduced by Piaggi et al {cite}``Piaggi2017`` for identification of defects and distinction between solid and liquid. The entropy paramater \(s_s^i\) is defined as,

\[s_s^i = -2\pi\rho k_B \int_0^{r_m} [g_m^i(r)\ln g_m^i(r) - g_m^i(r) + 1] r^2 dr\]

where \(r_m\) is the upper bound of integration and \(g_m^i\) is radial distribution function centered on atom \(i\),

\[g_m^i(r) = \frac{1}{4\pi\rho r^2} \sum_j \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-(r-r_{ij})^2/(2\sigma^2)}\]

\(r_{ij}\) is the interatomic distance between atom \(i\) and its neighbors \(j\) and \(\sigma\) is a broadening parameter.

The averaged version of entropy parameters \(\bar{s}_s^i\) can be calculated in two ways, either using a simple averaging over the neighbors given by,

\[\bar{s}_s^i = \frac{\sum_j s_s^j + s_s^i}{N + 1}\]

or using a switching function as described below,

\[\bar{s}_s^i = \frac{\sum_j s_s^i f(r_{ij}) + s_s^i}{\sum_j f(r_{ij}) + 1}\]

\(f(r_{ij})\) is a switching parameter which depends on \(r_a\) which is the cutoff distance. The switching function shows a value of 1 for \(r_{ij} << r_a\) and 0 for \(r_{ij} >> r_a\). The switching function is given by,

\[f(r_{ij}) = \frac{1-(r_{ij}/r_a)^N}{1-(r_{ij}/r_a)^M}\]

Entropy parameters can be calculated in pyscal using the following code,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method="cutoff", cutoff=0)
lattice_constant=4.00
sys.calculate_entropy(1.4*lattice_constant, averaged=True)
atoms = sys.atoms
entropy = [atom.entropy for atom in atoms]
average_entropy = [atom.avg_entropy for atom in atoms]

The value of \(r_m\) is provided in units of lattice constant. Further parameters shown above, such as \(\sigma\) can be specified using the various keyword arguments. The above code does a simple averaging over neighbors. The switching function can be used by,

sys.calculate_entropy(1.4*lattice_constant, ra=0.9*lattice_constant, switching_function=True, averaged=True)

In pyscal, a slightly different version of \(s_s^i\) is calculated. This is given by,

\[s_s^i = -\rho \int_0^{r_m} [g_m^i(r)\ln g_m^i(r) - g_m^i(r) + 1] r^2 dr\]

The prefactor \(2\pi k_B\) is dropped in the entropy values calculated in pyscal.

References

{bibliography} ../references.bib :filter: docname in docnames :style: unsrt

 Examples

Examples

	Getting started with pyscal
	The System class

	The Atom class

	Combining System and Atom

	Reading in an input file

	Calculating coordination numbers
	Read in a file

	Calculating neighbors
	Cutoff method

	Adaptive cutoff methods

	Voronoi method

	Finally..

	Calculating bond orientational order parameters
	Perfect structures
	Finding the cutoff distance

	Steinhardt’s parameters - cutoff neighbor method

	Structures with thermal vibrations
	cutoff method

	Analyzing a lammps trajectory
	Adding a clustering condition

	Using ASE

	Disorder variable

	Distinction of solid liquid atoms and clustering
	Clustering algorithm
	Clustering based on a custom property

	Voronoi parameters
	Voronoi volume

	Angular parameter
	Create structures

	\(\chi\) parameters

	Centrosymmetry parameter

	Cowley short range order parameter

	Entropy parameters

	Calculating energy
	Interatomic potentials

	Entropy and enthalpy parameters

	Visualizing System objects
	For Jupyter Notebooks

	For Jupyter Lab

	pyscal Trajectory

 Getting started with pyscal

Getting started with pyscal

This example illustrates basic functionality of pyscal python library by setting up a system and the atoms.

[1]:

import pyscal.core as pc
import numpy as np

The System class

System is the basic class of pyscal and is required to be setup in order to perform any calculations. It can be set up as-

[2]:

sys = pc.System()

sys is a System object. But at this point, it is completely empty. We have to provide the system with the following information- * the simulation box dimensions * the positions of individual atoms.

Let us try to set up a small system, which is the bcc unitcell of lattice constant 1. The simulation box dimensions of such a unit cell would be [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]] where the first set correspond to the x axis, second to y axis and so on.

The unitcell has 2 atoms and their positions are [0,0,0] and [0.5, 0.5, 0.5].

[3]:

sys.box = [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

We can easily check if everything worked by getting the box dimensions

[4]:

sys.box

[4]:

[[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

The Atom class

The next part is assigning the atoms. This can be done using the Atom class. Here, we will only look at the basic properties of Atom class. For a more detailed description, check the examples [https://pyscal.readthedocs.io/en/latest/examples.html].

Now let us create two atoms.

[5]:

atom1 = pc.Atom()
atom2 = pc.Atom()

Now two empty atom objects are created. The basic poperties of an atom are its positions and id. There are various other properties which can be set here. A detailed description can be found here [https://pyscal.readthedocs.io/en/latest/pyscal.html].

[6]:

atom1.pos = [0., 0., 0.]
atom1.id = 0
atom2.pos = [0.5, 0.5, 0.5]
atom2.id = 1

Alternatively, atom objects can also be set up as

[7]:

atom1 = pc.Atom(pos=[0., 0., 0.], id=0)
atom2 = pc.Atom(pos=[0.5, 0.5, 0.5], id=1)

We can check the details of the atom by querying it

[8]:

atom1.pos

[8]:

[0.0, 0.0, 0.0]

Combining System and Atom

Now that we have created the atoms, we can assign them to the system. We can also assign the same box we created before.

[9]:

sys = pc.System()
sys.atoms = [atom1, atom2]
sys.box = [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

That sets up the system completely. It has both of it’s constituents - atoms and the simulation box. We can check if everything works correctly.

[10]:

sys.atoms

[10]:

[<pyscal.catom.Atom at 0x7ff8f0c770f0>, <pyscal.catom.Atom at 0x7ff8f0c77130>]

This returns all the atoms of the system. Alternatively a single atom can be accessed by,

[11]:

atom = sys.get_atom(1)

The above call will fetch the atom at position 1 in the list of all atoms in the system. Due to Atom being a completely C++ class, it is necessary to use get_atom() and set_atom() to access individual atoms and set them back into the system object after modification. A list of all atoms however can be accessed directly by atoms.

Once you have all the atoms, you can modify any one and add it back to the list of all atoms in the system. The following statement will set the type of the first atom to 2.

[12]:

atom = sys.atoms[0]
atom.type = 2

Lets verify if it was done properly

[13]:

atom.type

[13]:

2

Now we can push the atom back to the system with the new type

[14]:

sys.set_atom(atom)

Reading in an input file

We are all set! The System is ready for calculations. However, in most realistic simulation situations, we have many atoms and it can be difficult to set each of them

individually. In this situation we can read in input file directly. An example input file containing 500 atoms in a simulation box can be read in automatically. The file we use for this example is a file of the lammps-dump [https://lammps.sandia.gov/doc/dump.html] format. pyscal can also read in POSCAR files. In principle, pyscal only needs the atom positions and simulation box size, so you can write a python function to process the input file, extract the details and pass to
pyscal.

[15]:

sys = pc.System()
sys.read_inputfile('conf.dump')

Once again, lets check if the box dimensions are read in correctly

[16]:

sys.box

[16]:

[[-7.66608, 11.1901], [-7.66915, 11.1931], [-7.74357, 11.2676]]

Now we can get all atoms that belong to this system

[17]:

len(sys.atoms)

[17]:

500

We can see that all the atoms are read in correctly and there are 500 atoms in total. Once again, individual atom properties can be

accessed as before.

[18]:

sys.atoms[0].pos

[18]:

[-5.66782, -6.06781, -6.58151]

Thats it! Now we are ready for some calculations. You can find more in the examples section of the documentation.

 Calculating coordination numbers

Calculating coordination numbers

In this example, we will read in a configuration from an MD simulation and then calculate the coordination number distribution.

This example assumes that you read the basic example [https://pyscal.readthedocs.io/en/latest/examples.html#basic-examples].

[1]:

import pyscal.core as pc
import numpy as np
import matplotlib.pyplot as plt

Read in a file

The first step is setting up a system. We can create atoms and simulation box using the pyscal.crystal_structures module. Let us start by importing the module.

[2]:

import pyscal.crystal_structures as pcs

[3]:

atoms, box = pcs.make_crystal('bcc', lattice_constant= 4.00, repetitions=[6,6,6])

The above function creates an bcc crystal of 6x6x6 unit cells with a lattice constant of 4.00 along with a simulation box that encloses the particles. We can then create a System and assign the atoms and box to it.

[4]:

sys = pc.System()
sys.atoms = atoms
sys.box = box

Calculating neighbors

We start by calculating the neighbors of each atom in the system. There are two ways to do this, using a cutoff method and using a voronoi polyhedra method. We will try with both of them. First we try with cutoff system - which has three sub options. We will check each of them in detail.

Cutoff method

Cutoff method takes cutoff distance value and finds all atoms within the cutoff distance of the host atom.

[5]:

sys.find_neighbors(method='cutoff', cutoff=4.1)

Now lets get all the atoms.

[6]:

atoms = sys.atoms

let us try accessing the coordination number of an atom

[7]:

atoms[0].coordination

[7]:

14

As we would expect for a bcc type lattice, we see that the atom has 14 neighbors (8 in the first shell and 6 in the second). Lets try a more interesting example by reading in a bcc system with thermal vibrations. Thermal vibrations lead to distortion in atomic positions, and hence there will be a distribution of coordination numbers.

[8]:

sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=3.6)
atoms = sys.atoms

We can loop over all atoms and create a histogram of the results

[9]:

coord = [atom.coordination for atom in atoms]

Now lets plot and see the results

[10]:

nos, counts = np.unique(coord, return_counts=True)
plt.bar(nos, counts, color="#AD1457")
plt.ylabel("density")
plt.xlabel("coordination number")
plt.title("Cutoff method")

[10]:

Text(0.5, 1.0, 'Cutoff method')

[image: ../_images/examples_02_finding_neighbors_23_1.png]

Adaptive cutoff methods

pyscal also has adaptive cutoff methods implemented. These methods remove the restriction on having the same cutoff. A distinct cutoff is selected for each atom during runtime. pyscal uses two distinct algorithms to do this - sann and adaptive. Please check the documentation [https://pyscal.readthedocs.io/en/latest/nearestneighbormethods.html] for a explanation of these algorithms. For the purpose of this example, we will use the adaptive algorithm.

adaptive algorithm

[11]:

sys.find_neighbors(method='cutoff', cutoff='adaptive', padding=1.5)
atoms = sys.atoms
coord = [atom.coordination for atom in atoms]

Now lets plot

[12]:

nos, counts = np.unique(coord, return_counts=True)
plt.bar(nos, counts, color="#AD1457")
plt.ylabel("density")
plt.xlabel("coordination number")
plt.title("Cutoff adaptive method")

[12]:

Text(0.5, 1.0, 'Cutoff adaptive method')

[image: ../_images/examples_02_finding_neighbors_29_1.png]

The adaptive method also gives similar results!

Voronoi method

Voronoi method calculates the voronoi polyhedra of all atoms. Any atom that shares a voronoi face area with the host atom are considered neighbors. Voronoi polyhedra is calculated using the Voro++ [http://math.lbl.gov/voro++/] code. However, you dont need to install this specifically as it is linked to pyscal.

[13]:

sys.find_neighbors(method='voronoi')

Once again, let us get all atoms and find their coordination

[14]:

atoms = sys.atoms
coord = [atom.coordination for atom in atoms]

And visualise the results

[15]:

nos, counts = np.unique(coord, return_counts=True)
plt.bar(nos, counts, color="#AD1457")
plt.ylabel("density")
plt.xlabel("coordination number")
plt.title("Voronoi method")

[15]:

Text(0.5, 1.0, 'Voronoi method')

[image: ../_images/examples_02_finding_neighbors_37_1.png]

Finally..

All methods find the coordination number, and the results are comparable. Cutoff method is very sensitive to the choice of cutoff radius, but voronoi method can slightly overestimate the neighbors due to thermal vibrations.

 Calculating bond orientational order parameters

Calculating bond orientational order parameters

This example illustrates the calculation of bond orientational order parameters. Bond order parameters, \(q_l\) and their averaged versions, \(\bar{q}_l\) are widely used to identify atoms belong to different crystal structures. In this example, we will consider bcc, fcc, and hcp, and calculate the \(q_4\) and \(q_6\) parameters and their averaged versions which are widely used in literature. More details can be found
here [https://pyscal.readthedocs.io/en/latest/steinhardtparameters.html].

[1]:

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import numpy as np
import matplotlib.pyplot as plt

In this example, we analyse MD configurations, first a set of perfect bcc, fcc and hcp structures and another set with thermal vibrations.

Perfect structures

To create atoms and box for perfect structures, the :mod:~pyscal.crystal_structures module is used. The created atoms and boxes are then assigned to System objects.

[2]:

bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=3.147, repetitions=[4,4,4])
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

[3]:

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=3.147, repetitions=[4,4,4])
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

[4]:

hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=3.147, repetitions=[4,4,4])
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

Next step is calculation of nearest neighbors. There are two ways to calculate neighbors, by using a cutoff distance or by using the voronoi cells. In this example, we will use the cutoff method and provide a cutoff distance for each structure.

Finding the cutoff distance

The cutoff distance is normally calculated in a such a way that the atoms within the first shell is incorporated in this distance. The :func:pyscal.core.System.calculate_rdf function can be used to find this cutoff distance.

[5]:

bccrdf = bcc.calculate_rdf()
fccrdf = fcc.calculate_rdf()
hcprdf = hcp.calculate_rdf()

Now the calculated rdf is plotted

[6]:

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(11,4))
ax1.plot(bccrdf[1], bccrdf[0])
ax2.plot(fccrdf[1], fccrdf[0])
ax3.plot(hcprdf[1], hcprdf[0])
ax1.set_xlim(0,5)
ax2.set_xlim(0,5)
ax3.set_xlim(0,5)
ax1.set_title('bcc')
ax2.set_title('fcc')
ax3.set_title('hcp')
ax2.set_xlabel("distance")
ax1.axvline(3.6, color='red')
ax2.axvline(2.7, color='red')
ax3.axvline(3.6, color='red')

[6]:

<matplotlib.lines.Line2D at 0x7f5cfc5f11d0>

[image: ../_images/examples_03_steinhardt_parameters_14_1.png]

The selected cutoff distances are marked in red in the above plot. For bcc, since the first two shells are close to each other, for this example, we will take the cutoff in such a way that both shells are included.

Steinhardt’s parameters - cutoff neighbor method

[7]:

bcc.find_neighbors(method='cutoff', cutoff=3.6)
fcc.find_neighbors(method='cutoff', cutoff=2.7)
hcp.find_neighbors(method='cutoff', cutoff=3.6)

We have used a cutoff of 3 here, but this is a parameter that has to be tuned. Using a different cutoff for each structure is possible, but it would complicate the method if the system has a mix of structures. Now we can calculate the \(q_4\) and \(q_6\) distributions

[8]:

bcc.calculate_q([4,6])
fcc.calculate_q([4,6])
hcp.calculate_q([4,6])

Thats it! Now lets gather the results and plot them.

[9]:

bccq = bcc.get_qvals([4, 6])
fccq = fcc.get_qvals([4, 6])
hcpq = hcp.get_qvals([4, 6])

[10]:

plt.scatter(bccq[0], bccq[1], s=60, label='bcc', color='#C62828')
plt.scatter(fccq[0], fccq[1], s=60, label='fcc', color='#FFB300')
plt.scatter(hcpq[0], hcpq[1], s=60, label='hcp', color='#388E3C')
plt.xlabel("q_4", fontsize=20)
plt.ylabel("q_6", fontsize=20)
plt.legend(loc=4, fontsize=15)

[10]:

<matplotlib.legend.Legend at 0x7f5cfc4edc10>

[image: ../_images/examples_03_steinhardt_parameters_22_1.png]

Firstly, we can see that Steinhardt parameter values of all the atoms fall on one specific point which is due to the absence of thermal vibrations. Next, all the points are well separated and show good distinction. However, at finite temperatures, the atomic positions are affected by thermal vibrations and hence show a spread in the distribution. We will show the effect of thermal vibrations in the next example.

Structures with thermal vibrations

Once again, we create the reqd structures using the :mod:~pyscal.crystal_structures module. Noise can be applied to atomic positions using the noise keyword as shown below.

[18]:

bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=3.147, repetitions=[10,10,10], noise=0.1)
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

[19]:

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=3.147, repetitions=[10,10,10], noise=0.1)
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

[20]:

hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=3.147, repetitions=[10,10,10], noise=0.1)
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

cutoff method

[21]:

bcc.find_neighbors(method='cutoff', cutoff=3.6)
fcc.find_neighbors(method='cutoff', cutoff=2.7)
hcp.find_neighbors(method='cutoff', cutoff=3.6)

And now, calculate \(q_4\), \(q_6\) parameters

[22]:

bcc.calculate_q([4,6])
fcc.calculate_q([4,6])
hcp.calculate_q([4,6])

Gather the q vales and plot them

[23]:

bccq = bcc.get_qvals([4, 6])
fccq = fcc.get_qvals([4, 6])
hcpq = hcp.get_qvals([4, 6])

[24]:

plt.scatter(fccq[0], fccq[1], s=10, label='fcc', color='#FFB300')
plt.scatter(hcpq[0], hcpq[1], s=10, label='hcp', color='#388E3C')
plt.scatter(bccq[0], bccq[1], s=10, label='bcc', color='#C62828')
plt.xlabel("q_4", fontsize=20)
plt.ylabel("q_6", fontsize=20)
plt.legend(loc=4, fontsize=15)

[24]:

<matplotlib.legend.Legend at 0x7f5cfc743a50>

[image: ../_images/examples_03_steinhardt_parameters_35_1.png]

The thermal vibrations cause the distributions to spread, but it still very good. Lechner and Dellago proposed using the averaged distributions, \(\bar{q}_4-\bar{q}_6\) to better distinguish the distributions. Lets try that.

[25]:

bcc.calculate_q([4,6], averaged=True)
fcc.calculate_q([4,6], averaged=True)
hcp.calculate_q([4,6], averaged=True)

[26]:

bccaq = bcc.get_qvals([4, 6], averaged=True)
fccaq = fcc.get_qvals([4, 6], averaged=True)
hcpaq = hcp.get_qvals([4, 6], averaged=True)

Lets see if these distributions are better..

[27]:

plt.scatter(fccaq[0], fccaq[1], s=10, label='fcc', color='#FFB300')
plt.scatter(hcpaq[0], hcpaq[1], s=10, label='hcp', color='#388E3C')
plt.scatter(bccaq[0], bccaq[1], s=10, label='bcc', color='#C62828')
plt.xlabel("q_4", fontsize=20)
plt.ylabel("q_6", fontsize=20)
plt.legend(loc=4, fontsize=15)

[27]:

<matplotlib.legend.Legend at 0x7f5cfc125650>

[image: ../_images/examples_03_steinhardt_parameters_40_1.png]

This looks much better! We can see that the resolution is much better than the non averaged versions.

There is also the possibility to calculate structures using Voronoi based neighbor identification too. Let’s try that now.

[28]:

bcc.find_neighbors(method='voronoi')
fcc.find_neighbors(method='voronoi')
hcp.find_neighbors(method='voronoi')

[29]:

bcc.calculate_q([4,6], averaged=True)
fcc.calculate_q([4,6], averaged=True)
hcp.calculate_q([4,6], averaged=True)

[30]:

bccaq = bcc.get_qvals([4, 6], averaged=True)
fccaq = fcc.get_qvals([4, 6], averaged=True)
hcpaq = hcp.get_qvals([4, 6], averaged=True)

Plot the calculated points..

[31]:

plt.scatter(fccaq[0], fccaq[1], s=10, label='fcc', color='#FFB300')
plt.scatter(hcpaq[0], hcpaq[1], s=10, label='hcp', color='#388E3C')
plt.scatter(bccaq[0], bccaq[1], s=10, label='bcc', color='#C62828')
plt.xlabel("q_4", fontsize=20)
plt.ylabel("q_6", fontsize=20)
plt.legend(loc=4, fontsize=15)

[31]:

<matplotlib.legend.Legend at 0x7f5cfbe5a510>

[image: ../_images/examples_03_steinhardt_parameters_47_1.png]

Voronoi based method also provides good resolution,the major difference being that the location of bcc distribution is different.

 Analyzing a lammps trajectory

Analyzing a lammps trajectory

In this example, a lammps trajectory in dump-text format will be read in, and Steinhardt’s parameters will be calculated.

[9]:

import pyscal.core as pc
import os
import pyscal.traj_process as ptp
import matplotlib.pyplot as plt
import numpy as np

First, we will use the split_trajectory method from pyscal.traj_process module to help split the trajectory into individual snapshots.

[41]:

trajfile = "traj.light"
files = ptp.split_trajectory(trajfile)

files contain the individual time slices from the trajectory.

[3]:

len(files)

[3]:

10

[4]:

files[0]

[4]:

'traj.light.snap.0.dat'

Now we can make a small function which reads a single configuration and calculates \(q_6\) values.

[39]:

def calculate_q6(file, format="lammps-dump"):
 sys = pc.System()
 sys.read_inputfile(file, format=format)
 sys.find_neighbors(method="cutoff", cutoff=0)
 sys.calculate_q(6)
 q6 = sys.get_qvals(6)
 return q6

There are a couple of things of interest in the above function. The find_neighbors method finds the neighbors of the individual atoms. Here, an adaptive method is used, but, one can also use a fixed cutoff or Voronoi tessellation. Also only the unaveraged \(q_6\) values are calculated above. The averaged ones can be calculate using the averaged=True keyword in both calculate_q and get_qvals method. Now we can simply call the function for each file..

[42]:

q6s = [calculate_q6(file) for file in files]

We can now visualise the calculated values

[10]:

plt.plot(np.hstack(q6s))

[10]:

[<matplotlib.lines.Line2D at 0x7fbd87929b20>]

[image: ../_images/examples_03_01_Steinhardts_parameters_for_lammps_12_1.png]

Adding a clustering condition

We will now modify the above function to also find clusters which satisfy particular \(q_6\) value. But first, for a single file.

[12]:

sys = pc.System()
sys.read_inputfile(files[0])
sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_q(6)

Now a clustering algorithm can be applied on top using the cluster_atoms method. cluster_atoms uses a condition as argument which should give a True/False value for each atom. Lets define a condition.

[15]:

def condition(atom):
 return atom.get_q(6) > 0.5

The above function returns True for any atom which has a \(q_6\) value greater than 0.5 and False otherwise. Now we can call the cluster_atoms method.

[16]:

sys.cluster_atoms(condition)

[16]:

16

The method returns 16, which here is the size of the largest cluster of atoms which have \(q_6\) value of 0.5 or higher. If information about all clusters are required, that can also be accessed.

[17]:

atoms = sys.atoms

atom.cluster gives the number of the cluster that each atom belongs to. If the value is -1, the atom does not belong to any cluster, that is, the clustering condition was not met.

[21]:

clusters = [atom.cluster for atom in atoms if atom.cluster != -1]

Now we can see how many unique clusters are there, and what their sizes are.

[23]:

unique_clusters, counts = np.unique(clusters, return_counts=True)

counts contain all the necessary information. len(counts) will give the number of unique clusters.

[28]:

plt.bar(range(len(counts)), counts)
plt.ylabel("Number of atoms in cluster")
plt.xlabel("Cluster ID")

[28]:

Text(0.5, 0, 'Cluster ID')

[image: ../_images/examples_03_01_Steinhardts_parameters_for_lammps_27_1.png]

Now we can finally put all of these together into a single function and run it over our individual time slices.

[43]:

def calculate_q6_cluster(file, cutoff_q6 = 0.5, format="lammps-dump"):
 sys = pc.System()
 sys.read_inputfile(file, format=format)
 sys.find_neighbors(method="cutoff", cutoff=0)
 sys.calculate_q(6)
 def _condition(atom):
 return atom.get_q(6) > cutoff_q6
 sys.cluster_atoms(condition)
 atoms = sys.atoms
 clusters = [atom.cluster for atom in atoms if atom.cluster != -1]
 unique_clusters, counts = np.unique(clusters, return_counts=True)
 return counts

[30]:

q6clusters = [calculate_q6_cluster(file) for file in files]

We can plot the number of clusters for each slice

[33]:

plt.plot(range(len(q6clusters)), [len(x) for x in q6clusters], 'o-')
plt.xlabel("Time slice")
plt.ylabel("number of unique clusters")

[33]:

Text(0, 0.5, 'number of unique clusters')

[image: ../_images/examples_03_01_Steinhardts_parameters_for_lammps_32_1.png]

We can also plot the biggest cluster size

[34]:

plt.plot(range(len(q6clusters)), [max(x) for x in q6clusters], 'o-')
plt.xlabel("Time slice")
plt.ylabel("Largest cluster size")

[34]:

Text(0, 0.5, 'Largest cluster size')

[image: ../_images/examples_03_01_Steinhardts_parameters_for_lammps_34_1.png]

The final thing to do is to remove the split files after use.

[44]:

for file in files:
 os.remove(file)

Using ASE [https://wiki.fysik.dtu.dk/ase/]

The above example can also done using ASE. The ASE read method needs to be imported.

[36]:

from ase.io import read

[37]:

traj = read("traj.light", format="lammps-dump-text", index=":")

In the above function, index=":" tells ase to read the complete trajectory. The individual slices can now be accessed by indexing.

[38]:

traj[0]

[38]:

Atoms(symbols='H500', pbc=False, cell=[18.21922, 18.22509, 18.36899], momenta=...)

We can use the same functions as above, but by specifying a different file format.

[46]:

q6clusters_ase = [calculate_q6_cluster(x, format="ase") for x in traj]

We will plot and compare with the results from before,

[47]:

plt.plot(range(len(q6clusters_ase)), [max(x) for x in q6clusters_ase], 'o-')
plt.xlabel("Time slice")
plt.ylabel("Largest cluster size")

[47]:

Text(0, 0.5, 'Largest cluster size')

[image: ../_images/examples_03_01_Steinhardts_parameters_for_lammps_46_1.png]

As expected, the results are identical for both calculations!

 Disorder variable

Disorder variable

In this example, disorder variable which was introduced to measure the disorder of a system is explored. We start by importing the necessary modules. We will use :mod:~pyscal.crystal_structures to create the necessary crystal structures.

[1]:

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt
import numpy as np

First an fcc structure with a lattice constant of 4.00 is created.

[3]:

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4])

The created atoms and box are assigned to a :class:~pyscal.core.System object.

[4]:

fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

The next step is find the neighbors, and the calculate the Steinhardt parameter based on which we could calculate the disorder variable.

[5]:

fcc.find_neighbors(method='cutoff', cutoff='adaptive')

Once the neighbors are found, we can calculate the Steinhardt parameter value. In this example \(q=6\) will be used.

[6]:

fcc.calculate_q(6)

Finally, disorder parameter can be calculated.

[7]:

fcc.calculate_disorder()

The calculated disorder value can be accessed for each atom using the :attr:~pyscal.catom.disorder variable.

[9]:

atoms = fcc.atoms

[10]:

disorder = [atom.disorder for atom in atoms]

[12]:

np.mean(disorder)

[12]:

-1.041556887034408e-16

As expected, for a perfect fcc structure, we can see that the disorder is zero. The variation of disorder variable on a distorted lattice can be explored now. We will once again use the noise keyword along with :func:~pyscal.crystal_structures.make_crystal to create a distorted lattice.

[13]:

fcc_atoms_d1, fcc_box_d1 = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4], noise=0.01)
fcc_d1 = pc.System()
fcc_d1.atoms = fcc_atoms_d1
fcc_d1.box = fcc_box_d1

Once again, find neighbors and then calculate disorder

[14]:

fcc_d1.find_neighbors(method='cutoff', cutoff='adaptive')
fcc_d1.calculate_q(6)
fcc_d1.calculate_disorder()

Check the value of disorder

[15]:

atoms_d1 = fcc_d1.atoms

[16]:

disorder = [atom.disorder for atom in atoms_d1]

[17]:

np.mean(disorder)

[17]:

0.013889967380485688

The value of average disorder for the system has increased with noise. Finally trying with a high amount of noise.

[18]:

fcc_atoms_d2, fcc_box_d2 = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4], noise=0.1)
fcc_d2 = pc.System()
fcc_d2.atoms = fcc_atoms_d2
fcc_d2.box = fcc_box_d2

[19]:

fcc_d2.find_neighbors(method='cutoff', cutoff='adaptive')
fcc_d2.calculate_q(6)
fcc_d2.calculate_disorder()

[20]:

atoms_d2 = fcc_d2.atoms

[21]:

disorder = [atom.disorder for atom in atoms_d2]
np.mean(disorder)

[21]:

1.8469165876016702

The value of disorder parameter shows an increase with the amount of lattice distortion. An averaged version of disorder parameter, averaged over the neighbors for each atom can also be calculated as shown below.

[22]:

fcc_d2.calculate_disorder(averaged=True)

[23]:

atoms_d2 = fcc_d2.atoms
disorder = [atom.avg_disorder for atom in atoms_d2]
np.mean(disorder)

[23]:

1.850630088115515

The disorder parameter can also be calculated for values of Steinhardt parameter other than 6. For example,

[24]:

fcc_d2.find_neighbors(method='cutoff', cutoff='adaptive')
fcc_d2.calculate_q([4, 6])
fcc_d2.calculate_disorder(q=4, averaged=True)

[25]:

atoms_d2 = fcc_d2.atoms
disorder = [atom.disorder for atom in atoms_d2]
np.mean(disorder)

[25]:

1.880741277448693

\(q=4\), for example, can be useful when measuring disorder in bcc crystals

 Distinction of solid liquid atoms and clustering

Distinction of solid liquid atoms and clustering

In this example, we will take one snapshot from a molecular dynamics simulation which has a solid cluster in liquid. The task is to identify solid atoms and cluster them. More details about the method can be found here [https://pyscal.readthedocs.io/en/latest/solidliquid.html].

The first step is, of course, importing all the necessary module. For visualisation, we will use Ovito [https://www.ovito.org/].

[image: alt text]

The above image shows a visualisation of the system using Ovito. Importing modules,

[1]:

import pyscal.core as pc

Now we will set up a System with this input file, and calculate neighbors. Here we will use a cutoff method to find neighbors. More details about finding neighbors can be found here [https://pyscal.readthedocs.io/en/latest/nearestneighbormethods.html#].

[2]:

sys = pc.System()
sys.read_inputfile('cluster.dump')
sys.find_neighbors(method='cutoff', cutoff=3.63)

Once we compute the neighbors, the next step is to find solid atoms. This can be done using System.find_solids method. There are few parameters that can be set, which can be found in detail here.

[3]:

sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=False)

The above statement found all the solid atoms. Solid atoms can be identified by the value of the solid attribute. For that we first get the atom objects and select those with solid value as True.

[4]:

atoms = sys.atoms
solids = [atom for atom in atoms if atom.solid]
len(solids)

[4]:

202

There are 202 solid atoms in the system. In order to visualise in Ovito, we need to first write it out to a trajectory file. This can be done with the help of to_file method of System. This method can help to save any attribute of the atom or ant Steinhardt parameter value.

[15]:

sys.to_file('sys.solid.dat', custom = ['solid'])

We can now visualise this file in Ovito. After opening the file in Ovito, the modifier compute property [https://ovito.org/manual/particles.modifiers.compute_property.html] can be selected. The Output property should be selection and in the expression field, solid==0 can be selected to select all the non solid atoms. Applying a modifier delete selected particles [https://ovito.org/manual/particles.modifiers.delete_selected_particles.html] can be applied to delete all the non
solid particles. The system after removing all the liquid atoms is shown below.

[image: alt text]

Clustering algorithm

You can see that there is a cluster of atom. The clustering functions that pyscal offers helps in this regard. If you used find_clusters with cluster=True, the clustering is carried out. Since we did used cluster=False above, we will rerun the function

[16]:

sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=True)

[16]:

176

You can see that the above function call returned the number of atoms belonging to the largest cluster as an output. In order to extract atoms that belong to the largest cluster, we can use the largest_cluster attribute of the atom.

[18]:

atoms = sys.atoms
largest_cluster = [atom for atom in atoms if atom.largest_cluster]
len(largest_cluster)

[18]:

176

The value matches that given by the function. Once again we will save this information to a file and visualise it in Ovito.

[19]:

sys.to_file('sys.cluster.dat', custom = ['solid', 'largest_cluster'])

The system visualised in Ovito following similar steps as above is shown below.

[image: alt text]

It is clear from the image that the largest cluster of solid atoms was successfully identified. Clustering can be done over any property. The following example with the same system will illustrate this.

Clustering based on a custom property

In pyscal, clustering can be done based on any property. The following example illustrates this. To find the clusters based on a custom property, the System.clusters_atoms method has to be used. The simulation box shown above has the centre roughly at (25, 25, 25). For the custom clustering, we will cluster all atoms within a distance of 10 from the the rough centre of the box at (25, 25, 25). Let us define a function that checks the above condition.

[24]:

def check_distance(atom):
 #get position of atom
 pos = atom.pos
 #calculate distance from (25, 25, 25)
 dist = ((pos[0]-25)**2 + (pos[1]-25)**2 + (pos[2]-25)**2)**0.5
 #check if dist < 10
 return (dist <= 10)

The above function would return True or False depending on a condition and takes the Atom as an argument. These are the two important conditions to be satisfied. Now we can pass this function to cluster. First, set up the system and find the neighbors.

[21]:

sys = pc.System()
sys.read_inputfile('cluster.dump')
sys.find_neighbors(method='cutoff', cutoff=3.63)

Now cluster

[25]:

sys.cluster_atoms(check_distance)

[25]:

242

There are 242 atoms in the cluster! Once again we can check this, save to a file and visualise in ovito.

[27]:

atoms = sys.atoms
largest_cluster = [atom for atom in atoms if atom.largest_cluster]
len(largest_cluster)

[27]:

242

[28]:

sys.to_file('sys.dist.dat', custom = ['solid', 'largest_cluster'])

[image: alt text]

This example illustrates that any property can be used to cluster the atoms!

 Voronoi parameters

Voronoi parameters

Voronoi tessellation [http://pyscal.com/en/latest/methods/voronoiparameters/voronoiparameters.html] can be used to identify local structure by counting the number of faces of the Voronoi polyhedra of an atom. For each atom a vector \(\langle n3~n4~n5~n6\) can be calculated where \(n_3\) is the number of Voronoi faces of the associated Voronoi polyhedron with three vertices, \(n_4\) is with four vertices and so on. Each perfect crystal structure such as a signature vector, for
example, bcc can be identified by \(\langle 0~6~0~8 \rangle\) and fcc can be identified using \(\langle 0~12~0~0 \rangle\). It is also a useful tool for identifying icosahedral structure which has the fingerprint \(\langle 0~0~12~0 \rangle\).

[1]:

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt
import numpy as np

The :mod:~pyscal.crystal_structures module is used to create different perfect crystal structures. The created atoms and simulation box is then assigned to a :class:~pyscal.core.System object. For this example, fcc, bcc, hcp and diamond structures are created.

[2]:

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4])
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

[3]:

bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=4, repetitions=[4,4,4])
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

[4]:

hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=4, repetitions=[4,4,4])
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

Before calculating the Voronoi polyhedron, the neighbors for each atom [http://pyscal.com/en/latest/methods/nearestneighbormethods/nearestneighbormethods.html] need to be found using Voronoi method.

[6]:

fcc.find_neighbors(method='voronoi')
bcc.find_neighbors(method='voronoi')
hcp.find_neighbors(method='voronoi')

Now, Voronoi vector can be calculated

[7]:

fcc.calculate_vorovector()
bcc.calculate_vorovector()
hcp.calculate_vorovector()

The calculated parameters for each atom can be accessed using the :attr:~pyscal.catom.Atom.vorovector attribute.

[8]:

fcc_atoms = fcc.atoms
bcc_atoms = bcc.atoms
hcp_atoms = hcp.atoms

[9]:

fcc_atoms[10].vorovector

[9]:

[0, 12, 0, 0]

As expected, fcc structure exhibits 12 faces with four vertices each. For a single atom, the difference in the Voronoi fingerprint is shown below

[21]:

fig, ax = plt.subplots()
ax.bar(np.array(range(4))-0.2, fcc_atoms[10].vorovector, width=0.2, label="fcc")
ax.bar(np.array(range(4)), bcc_atoms[10].vorovector, width=0.2, label="bcc")
ax.bar(np.array(range(4))+0.2, hcp_atoms[10].vorovector, width=0.2, label="hcp")
ax.set_xticks([1,2,3,4])
ax.set_xlim(0.5, 4.25)
ax.set_xticklabels(['n_3', 'n_4', 'n_5', 'n_6'])
ax.set_ylabel("Number of faces")
ax.legend()

[21]:

<matplotlib.legend.Legend at 0x7f1dc90d52d0>

[image: ../_images/examples_06_voronoi_tessellation_14_1.png]

The difference in Voronoi fingerprint for bcc and the closed packed structures is clearly visible. Voronoi tessellation, however, is incapable of distinction between fcc and hcp structures.

Voronoi volume

Voronoi volume, which is the volume of the Voronoi polyhedron is calculated when the neighbors are found. The volume can be accessed using the :attr:~pyscal.catom.Atom.volume attribute.

[27]:

fcc_atoms = fcc.atoms

[28]:

fcc_vols = [atom.volume for atom in fcc_atoms]

[29]:

np.mean(fcc_vols)

[29]:

16.0

 Angular parameter

Angular parameter

This illustartes the use of angular parameter to identify diamond structure. Angular parameter was introduced by Uttomark et al. [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.15717], and measures the tetrahedrality of the local atomic structure. An atom belonging to diamond structure has four nearest neighbors which gives rise to six three body angles around the atom. The angular parameter \(A\) is then defined as,

\(A = \sum_{i=1}^6 (\cos(\theta_i)+\frac{1}{3})^2\)

An atom belonging to diamond structure would show the value of angular params close to 0. The following example illustrates the use of this parameter.

[1]:

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import numpy as np
import matplotlib.pyplot as plt

Create structures

The first step is to create some structures using the pyscal crystal structures module and assign it to a System. This can be done as follows-

[2]:

atoms, box = pcs.make_crystal('diamond', lattice_constant=4, repetitions=[3,3,3])
sys = pc.System()
sys.atoms = atoms
sys.box = box

Now we can find the neighbors of all atoms. In this case we will use an adaptive method which can find an individual cutoff for each atom.

[3]:

sys.find_neighbors(method='cutoff', cutoff='adaptive')

Finally, the angular criteria can be calculated by,

[4]:

sys.calculate_angularcriteria()

The above function assigns the angular value for each atom which can be accessed using,

[5]:

atoms = sys.atoms
angular = [atom.angular for atom in atoms]

The angular values are zero for atoms that belong to diamond structure.

 \(\chi\) parameters

\(\chi\) parameters

\(\chi\) parameters introduced by Ackland and Jones [http://pyscal.com/en/latest/methods/angularmethods/chiparams.html] measures the angles generated by pairs of neighbor atom around the host atom, and assigns it to a histogram to calculate a local structure. In this example, we will create different crystal structures and see how the \(\chi\) parameters change with respect to the local coordination.

[1]:

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt
import numpy as np

The :mod:~pyscal.crystal_structures module is used to create different perfect crystal structures. The created atoms and simulation box is then assigned to a :class:~pyscal.core.System object. For this example, fcc, bcc, hcp and diamond structures are created.

[2]:

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4])
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

[3]:

bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=4, repetitions=[4,4,4])
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

[4]:

hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=4, repetitions=[4,4,4])
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

[5]:

dia_atoms, dia_box = pcs.make_crystal('diamond', lattice_constant=4, repetitions=[4,4,4])
dia = pc.System()
dia.atoms = dia_atoms
dia.box = dia_box

Before calculating \(\chi\) parameters, the neighbors for each atom [http://pyscal.com/en/latest/methods/nearestneighbormethods/nearestneighbormethods.html] need to be found.

[6]:

fcc.find_neighbors(method='cutoff', cutoff='adaptive')
bcc.find_neighbors(method='cutoff', cutoff='adaptive')
hcp.find_neighbors(method='cutoff', cutoff='adaptive')
dia.find_neighbors(method='cutoff', cutoff='adaptive')

Now, \(\chi\) parameters can be calculated

[7]:

fcc.calculate_chiparams()
bcc.calculate_chiparams()
hcp.calculate_chiparams()
dia.calculate_chiparams()

The calculated parameters for each atom can be accessed using the :attr:~pyscal.catom.Atom.chiparams attribute.

[8]:

fcc_atoms = fcc.atoms
bcc_atoms = bcc.atoms
hcp_atoms = hcp.atoms
dia_atoms = dia.atoms

[9]:

fcc_atoms[10].chiparams

[9]:

[6, 0, 0, 0, 24, 12, 0, 24, 0]

The output is an array of length 9 which shows the number of neighbor angles found within specific bins as explained here [http://pyscal.com/en/latest/methods/angularmethods/chiparams.html]. The output for one atom from each structure is shown below.

[28]:

plt.bar(np.array(range(9))-0.3, fcc_atoms[10].chiparams, width=0.2, label="fcc")
plt.bar(np.array(range(9))-0.1, bcc_atoms[10].chiparams, width=0.2, label="bcc")
plt.bar(np.array(range(9))+0.1, hcp_atoms[10].chiparams, width=0.2, label="hcp")
plt.bar(np.array(range(9))+0.3, dia_atoms[10].chiparams, width=0.2, label="diamond")
plt.xlabel("χ")
plt.ylabel("Number of angles")
plt.legend()

[28]:

<matplotlib.legend.Legend at 0x7f2f4f408650>

[image: ../_images/examples_08_chi_params_15_1.png]

The atoms exhibit a distinct fingerprint for each structure. Structural identification can be made up comparing the ratio of various \(\chi\) parameters as described in the original publication [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.73.054104].

 Centrosymmetry parameter

Centrosymmetry parameter

Centrosymmetry parameter (CSP) was introduced by *Kelchner et al.* [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.11085] to identify defects in crystals. The parameter measures the loss of local symmetry. For an atom with \(N\) nearest neighbors, the parameter is given by,

\[\mathrm{CSP} = \sum_{i=1}^{N/2} \big | \textbf{r}_i + \textbf{r}_{i+N/2} \big |^2\]

\(\textbf{r}_i\) and \(\textbf{r}_{i+N/2}\) are vectors from the central atom to two opposite pairs of neighbors. There are two main methods to identify the opposite pairs of neighbors as described in this publication [https://arxiv.org/abs/2003.08879]. The first of the approaches is called *Greedy Edge Selection* [https://iopscience.iop.org/article/10.1088/0965-0393/20/4/045021/meta](GES) and is implemented in LAMMPS [https://lammps.sandia.gov/] and
Ovito [https://www.ovito.org/]. GES algorithm calculates a weight \(w_{ij} = |\textbf{r}_i + \textbf{r}_j|\) for all combinations of neighbors around an atom and calculates CSP over the smallest \(N/2\) weights.

A centrosymmetry parameter calculation using GES algorithm can be carried out as follows-

[]:

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12)

nmax parameter specifies the number of nearest neighbors to be considered for the calculation of CSP. The second algorithm is called the Greedy Vertex Matching [https://dl.acm.org/doi/book/10.5555/1206879] and is implemented in AtomEye [http://li.mit.edu/Archive/Graphics/A/] and Atomsk [https://atomsk.univ-lille.fr/]. This algorithm orders the neighbors atoms in order of increasing distance from the central atom. From this list, the closest neighbor is paired with its lowest
weight partner and both atoms removed from the list. This process is continued until no more atoms are remaining in the list. CSP calculation using this algorithm can be carried out by,

[]:

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12, algorithm = "gvm")

 Cowley short range order parameter

Cowley short range order parameter

The Cowley short range order parameter [https://doi.org/10.1103/PhysRev.77.669] can be used to find if an alloy is ordered or not. The order parameter is given by,

\[\alpha_i = 1 - \frac{n_i}{m_A c_i}\]

where \(n_i\) is the number of atoms of the non reference type among the \(c_i\) atoms in the \(i\)th shell. \(m_A\) is the concentration of the non reference atom.

We can start by importing the necessary modules

[12]:

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt

We need a binary alloy structure to calculate the order parameter. We will use the crystal structures modules to do this. Here, we will create a L12 structure.

[13]:

atoms, box = pcs.make_crystal('l12', lattice_constant=4.00, repetitions=[2,2,2])

In order to use the order parameter, we need to have two shells of neighbors around the atom. In order to get two shells of neighbors, we will first estimate a cutoff using the radial distribution function.

[14]:

val, dist = sys.calculate_rdf()

We can plot the rdf,

[15]:

plt.plot(dist, val)
plt.xlabel(r"distance \AA")
plt.ylabel(r"$g(r)$")

[15]:

Text(0, 0.5, '$g(r)$')

[image: ../_images/examples_10_short_range_order_9_1.png]

In this case, a cutoff of about 4.5 will make sure that two shells are included. Now the neighbors are calculated using this cutoff.

[16]:

sys.find_neighbors(method='cutoff', cutoff=4.5)

Finally we can calculate the short range order. We will use the reference type as 1 and also specify the average keyword as True. This will allow us to get an average value for the whole simulation box.

[17]:

sys.calculate_sro(reference_type=1, average=True)

[17]:

array([-0.33333333, 1.])

Value for individual atoms can be accessed by,

[18]:

atoms = sys.atoms

[19]:

atoms[4].sro

[19]:

[-0.33333333333333326, 1.0]

Only atoms of the non reference type will have this value!

 Entropy parameters

Entropy parameters

In this example, the entropy parameters are calculated and used for distinction of solid and liquid. For a description of entropy parameters, see here [http://pyscal.com/en/latest/methods/entropy_parameters/entropy_parameters.html].

[1]:

import pyscal.core as pc
import matplotlib.pyplot as plt
import numpy as np

We have two test configurations for Al at 900 K, one is fcc structured and the other one is in liquid state. We calculate the entropy parameters for each of these configurations. First we start by reading in the fcc configuration. For entropy parameters, the values of the integration limit \(r_m\) is chosen as 1.4, based on the original publication [https://aip.scitation.org/doi/10.1063/1.4998408].

[2]:

sys = pc.System()
sys.read_inputfile("../tests/conf.fcc.Al.dump")
sys.find_neighbors(method="cutoff", cutoff=0)

The values of \(r_m\) is in units of lattice constant, so we need to calculate the lattice constant first. Since is a cubic box, we can do this by,

[3]:

lat = (sys.box[0][1]-sys.box[0][0])/5

Now we calculate the entropy parameter and its averaged version. Averaging can be done in two methods, as a simple average over neighbors or using a switching function. We will use a simple averaging over the neighbors. The local keyword allows to use a local density instead of the global one. However, this only works if the neighbors were calculated using a cutoff method.

[4]:

sys.calculate_entropy(1.4*lat, averaged=True, local=True)

The calculated values are stored for each atom. This can be accessed as follows,

[5]:

atoms = sys.atoms
solid_entropy = [atom.entropy for atom in atoms]
solid_avg_entropy = [atom.avg_entropy for atom in atoms]

Now we can quickly repeat the calculation for the liquid structure.

[6]:

sys = pc.System()
sys.read_inputfile("../tests/conf.lqd.Al.dump")
sys.find_neighbors(method="cutoff", cutoff=0)
lat = (sys.box[0][1]-sys.box[0][0])/5
sys.calculate_entropy(1.4*lat, local=True, averaged=True)
atoms = sys.atoms
liquid_entropy = [atom.entropy for atom in atoms]
liquid_avg_entropy = [atom.avg_entropy for atom in atoms]

Finally we can plot the results

[7]:

xmin = -3.55
xmax = -2.9
bins = np.arange(xmin, xmax, 0.01)
x = plt.hist(solid_entropy, bins=bins, density=True, alpha=0.5, color="#EF9A9A")
x = plt.hist(solid_avg_entropy, bins=bins, density=True, alpha=0.5, color="#B71C1C")
x = plt.hist(liquid_entropy, bins=bins, density=True, alpha=0.5, color="#90CAF9")
x = plt.hist(liquid_avg_entropy, bins=bins, density=True, alpha=0.5, color="#0D47A1")
plt.xlabel(r"s_s^i")

[7]:

Text(0.5, 0, 's_s^i')

[image: ../_images/examples_11_entropy_parameter_14_1.png]

The distributions of \(s_s^i\) given in light red and light blue are fairly distinct but show some overlap. The averaged entropy parameter, \(\bar{s}_s^i\) show distinct peaks which can distinguish solid and liquid very well.

[8]:

np.mean(solid_entropy), np.mean(solid_avg_entropy)

[8]:

(-3.47074287018929, -3.47074287018929)

 Calculating energy

Calculating energy

pyscal can also be used for quick energy calculations. The energy per atom can give an insight into the local environment. pyscal relies on the python library interface [https://lammps.sandia.gov/doc/Python_library.html] of LAMMPS [https://lammps.sandia.gov/] for calculation of energy. The python library interface, hence, is a requirement for energy calculation. The easiest way to set up the LAMMPS library is by installing LAMMPS through the conda package.

conda install -c conda-forge lammps

Alternatively, this page [https://lammps.sandia.gov/doc/Python_head.html] provides information on how to compile manually.

Interatomic potentials

An interatomic potential is also required for the calculation of energy. The potential can be of any type that LAMMPS supports [https://lammps.sandia.gov/doc/pair_style.html]. For this example, we will use an EAM potential for Mo which is provided in the file Mo.set.

We start by importing the necessary modules,

[1]:

import pyscal.core as pc
import matplotlib.pyplot as plt
import numpy as np

For this example, a LAMMPS dump file [https://lammps.sandia.gov/doc/dump.html] will be read in and the energy will be calculated.

[2]:

sys = pc.System()
sys.read_inputfile("conf.bcc.dump")

Now the energy can be calculated by,

[3]:

sys.calculate_energy(species=['Mo'], pair_style='eam/alloy',
 pair_coeff='* * Mo.set Mo', mass=95)

The first keyword above is species, which specifies the atomic species. This is required for ASE [https://wiki.fysik.dtu.dk/ase/] module which is used under the hood for convertion of files. pair_style species the type of potential used in LAMMPS. See documentation here [https://lammps.sandia.gov/doc/pair_style.html]. pair_coeff is another LAMMPS command which is documented well here [https://lammps.sandia.gov/doc/pair_coeff.html]. Also, the mass needs to be provided.

Once the calculation is over, the energy can be accessed for each atom as follows,

[4]:

atoms = sys.atoms

[5]:

atoms[0].energy

[5]:

-6.743130736133679

It is also possible to find the energy averaged over the neighbors using the averaged keyword. However, a neighbor calculation should be done before.

[6]:

sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_energy(species=['Mo'], pair_style='eam/alloy',
 pair_coeff='* * Mo.set Mo', mass=95, averaged=True)

[7]:

atoms = sys.atoms
atoms[0].avg_energy

[7]:

-6.534395941639571

We have two test configurations for Al at 900 K, one is fcc structured and the other one is in liquid state. We calculate the energy parameters for each of these configurations.

[8]:

sys = pc.System()
sys.read_inputfile("../tests/conf.fcc.Al.dump")
sys.find_neighbors(method="cutoff", cutoff=0)

[9]:

sys.calculate_energy(species=['Al'], pair_style='eam/alloy',
 pair_coeff='* * Al.eam.fs Al', mass=26.98, averaged=True)

Now lets gather the energies

[10]:

atoms = sys.atoms
solid_energy = [atom.energy for atom in atoms]
solid_avg_energy = [atom.avg_energy for atom in atoms]

We can repeat the calculations for the liquid phase,

[11]:

sys = pc.System()
sys.read_inputfile("../tests/conf.lqd.Al.dump")
sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_energy(species=['Al'], pair_style='eam/alloy',
 pair_coeff='* * Al.eam.fs Al', mass=26.98, averaged=True)
atoms = sys.atoms
liquid_energy = [atom.energy for atom in atoms]
liquid_avg_energy = [atom.avg_energy for atom in atoms]

Finally we can plot the results

[13]:

xmin = -3.5
xmax = -2.5
bins = np.arange(xmin, xmax, 0.01)
x = plt.hist(solid_energy, bins=bins, density=True, alpha=0.5, color="#EF9A9A")
x = plt.hist(solid_avg_energy, bins=bins, density=True, alpha=0.5, color="#B71C1C")
x = plt.hist(liquid_energy, bins=bins, density=True, alpha=0.5, color="#90CAF9")
x = plt.hist(liquid_avg_energy, bins=bins, density=True, alpha=0.5, color="#0D47A1")
plt.xlabel(r"Energy")

[13]:

Text(0.5, 0, 'Energy')

[image: ../_images/examples_12_calculating_energy_22_1.png]

 Entropy and enthalpy parameters

Entropy and enthalpy parameters

In this example, energy and entropy parameters will be used for structural distinction. We will consider bcc, fcc, and hcp structures to calculate the parameters.

[1]:

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import numpy as np
import matplotlib.pyplot as plt

Now we will create some structures with thermal vibrations

[2]:

bcc_atoms, bcc_box = pcs.make_crystal('bcc',
 lattice_constant=3.147,
 repetitions=[10,10,10], noise=0.1)
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

[3]:

fcc_atoms, fcc_box = pcs.make_crystal('fcc',
 lattice_constant=3.147,
 repetitions=[10,10,10], noise=0.1)
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

[4]:

hcp_atoms, hcp_box = pcs.make_crystal('hcp',
 lattice_constant=3.147,
 repetitions=[10,10,10], noise=0.1)
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

The next step is to calculate the neighbors using adaptive cutoff

[5]:

bcc.find_neighbors(method='cutoff', cutoff=0)
fcc.find_neighbors(method='cutoff', cutoff=0)
hcp.find_neighbors(method='cutoff', cutoff=0)

In order to calculate energy, a molybdenum potential is used here.

[6]:

bcc.calculate_energy(species=['Mo'], pair_style='eam/alloy',
 pair_coeff='* * Mo.set Mo', mass=95,
 averaged=True)
fcc.calculate_energy(species=['Mo'], pair_style='eam/alloy',
 pair_coeff='* * Mo.set Mo', mass=95,
 averaged=True)
hcp.calculate_energy(species=['Mo'], pair_style='eam/alloy',
 pair_coeff='* * Mo.set Mo', mass=95,
 averaged=True)

Now we will calculate the entropy parameters

[7]:

latbcc = (bcc.box[0][1]-bcc.box[0][0])/10
latfcc = (fcc.box[0][1]-fcc.box[0][0])/10
lathcp = (hcp.box[0][1]-hcp.box[0][0])/10

[8]:

bcc.calculate_entropy(1.4*latbcc, averaged=True, local=True)
fcc.calculate_entropy(1.4*latfcc, averaged=True, local=True)
hcp.calculate_entropy(1.4*lathcp, averaged=True, local=True)

Gather the values

[9]:

bccenergy = [atom.energy for atom in bcc.atoms]
avgbccenergy = [atom.avg_energy for atom in bcc.atoms]
fccenergy = [atom.energy for atom in fcc.atoms]
avgfccenergy = [atom.avg_energy for atom in fcc.atoms]
hcpenergy = [atom.energy for atom in hcp.atoms]
avghcpenergy = [atom.avg_energy for atom in hcp.atoms]

[10]:

bccentropy = [atom.entropy for atom in bcc.atoms]
avgbccentropy = [atom.avg_entropy for atom in bcc.atoms]
fccentropy = [atom.entropy for atom in fcc.atoms]
avgfccentropy = [atom.avg_entropy for atom in fcc.atoms]
hcpentropy = [atom.entropy for atom in hcp.atoms]
avghcpentropy = [atom.avg_entropy for atom in hcp.atoms]

[13]:

plt.scatter(fccenergy, fccentropy, s=10, label='fcc', color='#FFB300')
plt.scatter(hcpenergy, hcpentropy, s=10, label='hcp', color='#388E3C')
plt.scatter(bccenergy, bccentropy, s=10, label='bcc', color='#C62828')
plt.xlabel("Energy")
plt.ylabel("Entropy")
plt.legend()

[13]:

<matplotlib.legend.Legend at 0x7f82fd6bc690>

[image: ../_images/examples_13_combining_energy_enthalpy_17_1.png]

[14]:

plt.scatter(avgfccenergy, avgfccentropy, s=10, label='fcc', color='#FFB300')
plt.scatter(avghcpenergy, avghcpentropy, s=10, label='hcp', color='#388E3C')
plt.scatter(avgbccenergy, avgbccentropy, s=10, label='bcc', color='#C62828')
plt.xlabel("Avg Energy")
plt.ylabel("Avg Entropy")
plt.legend()

[14]:

<matplotlib.legend.Legend at 0x7f82fd615d90>

[image: ../_images/examples_13_combining_energy_enthalpy_18_1.png]

 Visualizing System objects

Visualizing System objects

In this notebook, experimental plotting methods of pyscal is illustrated. The plotting functionality works only through jupyter notebooks or jupyter lab. It depends on ipywidgets and plotly to render the output. There is some extra configuration that needs to be done which is mentioned below:

For Jupyter Notebooks

pip install "notebook>=5.3" "ipywidgets>=7.2"

or

conda install "notebook>=5.3" "ipywidgets>=7.2"

For Jupyter Lab

pip install jupyterlab "ipywidgets>=7.5"

or

conda install jupyterlab "ipywidgets=7.5"

followed by,

jupyter labextension install jupyterlab-plotly@4.11.0
jupyter labextension install @jupyter-widgets/jupyterlab-manager plotlywidget@4.11.0

We start by importing the necessary modules

[1]:

import pyscal.core as pc

Now we can set up a system and read in a file to be visualized

[2]:

sys = pc.System()
sys.read_inputfile("../tests/conf8k.dump", customkeys=["vx", "vy", "vz"])

We will further calculate some q values and also the solid particles in the system which will be used later for visualization

[3]:

sys.find_neighbors(method="cutoff", cutoff=0)
sys.calculate_q([4, 5, 6], averaged=True)
sys.find_solids()

[3]:

448

In order to visualize the system, the show method can be used. This method renders a widget which a slider for the radius of atoms and a text box for entering the colormap to be used for coloring atoms. A list of colormaps can be found here [https://plotly.com/python/builtin-colorscales/]. The widget also has a Render plot button which will generate the plot.

[4]:

sys.show()

This is just a general rendering of the system. Further customization can be done. For example, we can color the atoms using the averaged q6 values.

[5]:

sys.show(colorby="aq6")

We can also select which atoms are to be plotted. For example we can refine the figure to only plot the atoms that are identified as solid in the find_solids method.

[6]:

sys.show(colorby="aq6", filterby="solid")

Any atom property can used to color the map. These include any Atom attribute [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom], calculated q values which can be accessed by qx or aqx, for traditional and averaged Steinhardts parameters respectively. x stands for the number of q. It can also be attributes that are stored in the Atom.custom [https://docs.pyscal.org/en/latest/pyscal.html#pyscal.catom.Atom.custom] variable. In the above code bit, when the file
was read in, the custom variable was used to read in the velocities for each atom. We will color atoms using the velocity in x direction, that is vx attribute.

[9]:

sys.show(colorby="vx")

 pyscal Trajectory

pyscal Trajectory

Trajectory is a pyscal module intended for working with molecular dynamics trajectories which contain more than one time slice. Currently, the module only supports LAMMPS dump [https://lammps.sandia.gov/doc/dump.html] text file formats. It can be used to get a single or slices from a trajectory, trim the trajectory or even combine multiple trajectories. The example below illustrates various uses of the module.

``Trajectory`` is an experimental feature at the moment and may undergo significant changes in future releases

Start with importing the module

[1]:

from pyscal import Trajectory

Read in a trajectory.

[2]:

traj = Trajectory("traj.light")

When using the above statement, the trajectory is not yet read in to memory. Just the basic information is available now.

[3]:

traj

[3]:

Trajectory of 10 slices with 500 atoms

We can know the number of slices in the trajectory and the number of atoms. Trajectory only works with fixed number of atoms.

Now, one can get a single slice or multiple slices just as is done with a python list. Getting the 2nd slice (counting starts from 0!).

[4]:

sl = traj[2]
sl

[4]:

Trajectory slice
 2-2
 natoms=500

This slice can now be converted to a more usable format, either to a pyscal System or just written to another text file. Convert to a pyscal System object,

[5]:

sys = sl.to_system()
sys

[5]:

[<pyscal.core.System at 0x7f81f93971d0>]

System objects contain all the information. The atomic positions, simulation box and so on are easily accessible.

[6]:

sys[0].box

[6]:

[[18.22887, 0.0, 0.0], [0.0, 18.234740000000002, 0.0], [0.0, 0.0, 18.37877]]

[7]:

sys[0].atoms[0].pos

[7]:

[-4.9941, -6.34185, -6.8551]

If information other than positions are required, the customkeys keyword can be used. For example, for velocity in the x direction,

[8]:

sys = sl.to_system(customkeys=["vx"])
sys

[8]:

[<pyscal.core.System at 0x7f81f9397530>]

[9]:

sys[0].atoms[0].custom["vx"]

[9]:

'-1.21558'

Instead of creating a System object, the slice can also be written to a file directly.

[10]:

sl.to_file("test.dump")

Like normal python lists, multiple slices can also be accessed directly

[12]:

sl1 = traj[0:4]
sl1

[12]:

Trajectory slice
 0-3
 natoms=500

to_system and to_file methods can be used on this object too.

Multiple slices can be added together

[13]:

sl2 = traj[5:7]
sl2

[13]:

Trajectory slice
 5-6
 natoms=500

[14]:

slnew = sl1+sl2
slnew

[14]:

Trajectory slice
 0-3/5-6
 natoms=500

Once again, one could write the combined trajectory slice to a file, or create a System object out of it.

 pyscal reference

pyscal reference

	pyscal Reference
	pyscal.core module

	pyscal.crystal_structures module

	pyscal.trajectory module

	pyscal.traj_process module

	pyscal.misc module

 pyscal Reference

pyscal Reference

pyscal.core module

Main module of pyscal. This module contains definitions of the two major
classes in pyscal - the System and Atom.
Atom is a pure pybind11 class whereas System is a hybrid class with additional
python definitions. For the ease of use, Atom class should be imported from the core
module. The original pybind11 definitions of Atom and System can be found in catom
and csystem respectively.

	
class pyscal.core.System

	Bases: pyscal.csystem.System

A python/pybind11 hybrid class for holding the properties of a system.

	
box

	A list containing the dimensions of the simulation box in the format
[[x_low, x_high], [y_low, y_high], [z_low, z_high]]

	Type

	list of list of floats

	
atoms

	
	Type

	list of Atom objects

Notes

A System consists of two
major components - the simulation box and the atoms. All the associated variables
are then calculated using this class.

Note

atoms can be accessed or set as atoms. However, due to
technical reasons individual atoms should be accessed using the
get_atom() method. An atom can be assigned
to the atom using the set_atom() method.

Examples

>>> sys = System()
>>> sys.read_inputfile('atoms.dat')

	
__init__()

	

	
add_atoms(atoms)

	Add a given list of atoms

	Parameters

	atoms (List of Atoms) –

	Returns

	

	Return type

	None

	
property atoms

	Atom access

	
property box

	Wrap for inbuilt box

	
calculate_angularcriteria()

	Calculate the angular criteria for each atom
:param None:

	Returns

	

	Return type

	None

Notes

Calculates the angular criteria for each atom as defined in [1]_. Angular criteria is
useful for identification of diamond cubic structures. Angular criteria is defined by,

\[A = \sum_{i=1}^6 (\cos(\theta_i) + \frac{1}{3})^2\]

where cos(theta) is the angle size suspended by each pair of neighbors of the central
atom. A will have a value close to 0 for structures if the angles are close to 109 degrees.
The calculated A parameter for each atom is stored in angular.

References

	1

	Uttormark, MJ, Thompson, MO, Clancy, P, Phys. Rev. B 47, 1993

	
calculate_centrosymmetry(nmax=12, get_vals=True)

	Calculate the centrosymmetry parameter

	Parameters

	nmax (int, optional) – number of neighbors to be considered for centrosymmetry
parameters. Has to be a positive, even integer. Default 12

	Returns

	

	Return type

	None

Notes

Calculate the centrosymmetry parameter for each atom which can be accessed by
centrosymmetry attribute. It calculates the degree of inversion
symmetry of an atomic environment. Centrosymmetry recalculates the neighbor using
the number method as specified in ¬pyscal.core.System.find_neighbors() method. This
is the ensure that the required number of neighbors are found for calculation of the parameter.

The Greedy Edge Selection (GES) [1] as specified in [2] in used in this method.
GES algorithm is implemented in LAMMPS and Ovito. Please see [2] for
a detailed description of the algorithms.

References

	1

	Stukowski, A, Model Simul Mater SC 20, 2012

	2

	Larsen, arXiv:2003.08879v1, 2020

	
calculate_chiparams(angles=False)

	Calculate the chi param vector for each atom

	Parameters

	angles (bool, optional) – If True, return the list of cosines of all neighbor pairs

	Returns

	angles – list of all cosine values, returned only if angles is True.

	Return type

	array of floats

Notes

This method tries to distinguish between crystal structures by finding the cosines of angles
formed by an atom with its neighbors. These cosines are then historgrammed with bins
[-1.0, -0.945, -0.915, -0.755, -0.705, -0.195, 0.195, 0.245, 0.795, 1.0] to find a vector for
each atom that is indicative of its local coordination. Compared to chi parameters from chi_0 to
chi_7 in the associated publication, the vector here is from chi_0 to chi_8. This is due to an additional
chi parameter which measures the number of neighbors between cosines -0.705 to -0.195.

Parameter nlimit specifies the number of nearest neighbors to be included in the analysis to find the cutoff.
If parameter angles is true, an array of all cosine values is returned. The publication further provides
combinations of chi parameters for structural identification which is not implemented here. The calculated
chi params can be accessed using chiparams.

References

	1

	Ackland, Jones, Phys. Rev. B 73, 2006

	
calculate_cna(lattice_constant=None)

	Calculate the Common Neighbor Analysis indices

	Parameters

	lattice_constant (float, optional) – lattice constant to calculate CNA. If not specified,
adaptive CNA will be used

	Returns

	cna – dict containing the cna signature of the system

	Return type

	dict

Notes

Performs the common neighbor analysis [1][2] or the adaptive common neighbor
analysis [2] and assigns a structure to each atom.

If lattice_constant is specified, a convential common neighbor analysis is
used. If lattice_constant is not specified, adaptive common neighbor analysis is used.
The assigned structures can be accessed by structure.
The values assigned for stucture are 0 Unknown, 1 fcc, 2 hcp, 3 bcc, 4 icosahedral.

References

	1

	Faken, Jonsson, CMS 2, 1994

	2

	Honeycutt, Andersen, JPC 91, 1987

	3

	Stukowski, A, Model Simul Mater SC 20, 2012

	
calculate_disorder(averaged=False, q=6)

	Calculate the disorder criteria for each atom

	Parameters

	
	averaged (bool, optional) – If True, calculate the averaged disorder. Default False.

	q (int, optional) – The Steinhardt parameter value over which the bonds have to be calculated.
Default 6.

	Returns

	

	Return type

	None

Notes

Calculate the disorder criteria as introduced in [1]. The disorder criteria value for each atom is defined by,

\[D_j = \frac{1}{N_b^j} \sum_{i=1}^{N_b} [S_{jj} + S_{kk} -2S_{jk}]\]

where .. math:: S_{ij} = sum_{m=-6}^6 q_{6m}(i) q_{6m}^*(i)

The keyword averaged is True, the disorder value is averaged over the atom and its neighbors. The disorder value
can be accessed using disorder and the averaged version can be accessed using
avg_disorder. For ordered systems, the value of disorder would be zero which would increase
and reach one for disordered systems.

References

	1

	Kawasaki, T, Onuki, A, J. Chem. Phys. 135, 2011

	
calculate_energy(species='Au', pair_style=None, pair_coeff=None, mass=1.0, averaged=False)

	Calculate the potential energy of atom using LAMMPS

	Parameters

	
	species (str) – Name of atomic species

	pair_style (str) – lammps pair style

	pair_coeff (str) – lammps pair coeff

	mass (float) – mass of the atoms

	averaged (bool, optional) – Average the energy over neighbors if True
default False.

	Returns

	

	Return type

	None

Notes

Calculates the potential energy per atom using the given potential
through LAMMPS. More documentation coming up…

Values can be accessed through pyscal.catom.Atom.energy
Averaged values can be accessed through pyscal.catom.Atom.avg_energy

If averaged is True, the energy is averaged over the neighbors of an
atom. If neighbors were calculated before calling this method, those neighbors
are used for averaging. Otherwise neighbors are calculated on the fly
with an adaptive cutoff method.

	
calculate_entropy(rm, sigma=0.2, rstart=0.001, h=0.001, local=False, M=12, N=6, ra=None, averaged=False, switching_function=False)

	Calculate the entropy parameter for each atom

	Parameters

	
	rm (float) – cutoff distance for integration of entropy parameter in distance units

	sigma (float) – broadening parameter

	rstart (float, optional) – minimum limit for integration, default 0.00001

	h (float, optional) – width for trapezoidal integration, default 0.0001

	local (bool, optional) – if True, use the local density instead of global density
default False

	averaged (bool, optional) – if True find the averaged entropy parameters
default False

	switching_function (bool, optional) – if True, use the switching function to average, otherwise do a simple average
over the neighbors.
Default False

	ra (float, optional) – cutoff length for switching function
used only if switching_function is True

	M (int, optional) – power for switching function, default 12
used only if switching_function is True

	N (int, optional) – power for switching function, default 6
used only if switching_function is True

	Returns

	

	Return type

	None

Notes

The entropy parameters can be accessed by entropy
and avg_entropy. For a complete description of the entropy
parameter, see the documentation [http://pyscal.com/en/latest/methods/entropy_parameters/entropy_parameters.html]

The local keyword can be used to use a local density instead of the global one.
This method will only work with neighbor methods that use a cutoff.

	
calculate_q(q, averaged=False, only_averaged=False, condition=None, clear_condition=False)

	Find the Steinhardt parameter q_l for all atoms.

	Parameters

	
	q_l (int or list of ints) – A list of all Steinhardt parameters to be found from 2-12.

	averaged (bool, optional) – If True, return the averaged q values, default False

	only_averaged (bool, optional) – If True, only calculate the averaged part. default False

	condition (callable or atom property) – Either function which should take an Atom object, and give a True/False output
or an attribute of atom class which has value or 1 or 0.

	clear_condition (bool, optional) – clear the condition variable for all atoms

	Returns

	

	Return type

	None

Notes

Enables calculation of the Steinhardt parameters [1] q from 2-12. The type of
q values depend on the method used to calculate neighbors. See the description
find_neighbors() for more details. If the keyword average is set to True,
the averaged versions of the bond order parameter [2] is returned. If only the averaged
versions need to be calculated, only_averaged keyword can be set to False.

The neighbors over which the q values are calculated can also be filtered. This is done
through the argument condition which is passed as a parameter.
condition can be of two types. The first type is a function which takes an
Atom object and should give a True/False value. condition can also be an
Atom attribute or a value from custom values stored in an atom. See
cluster_atoms() for more details. If the
condition is equal for both host atom and the neighbor, the neighbor is considered for
calculation of q parameters. This is slightly different from cluster_atoms()
where the condition has to be True for both atoms. condition is only cleared when neighbors are
recalculated. Additionally, the keyword clear_condition can also be used to clear the condition
and reset it to 0. By default, condition is applied to both unaveraged and averaged q parameter
calculation. If condition is needed for only averaged q parameters, this function can be called
twice, initially without condition and averaged=False, and then with a condition specified
and averaged=True. This way, the condition will only be applied to the averaged q calculation.

References

	1

	Steinhardt, PJ, Nelson, DR, Ronchetti, M. Phys Rev B 28, 1983

	2

	Lechner, W, Dellago, C, J Chem Phys, 2013

	
calculate_rdf(histobins=100, histomin=0.0, histomax=None)

	Calculate the radial distribution function.

	Parameters

	
	histobins (int) – number of bins in the histogram

	histomin (float, optional) – minimum value of the distance histogram. Default 0.0.

	histomax (float, optional) – maximum value of the distance histogram. Default, the maximum value
in all pair distances is used.

	Returns

	
	rdf (array of ints) – Radial distribution function

	r (array of floats) – radius in distance units

	
calculate_solidneighbors()

	Find Solid neighbors of all atoms in the system.

	Parameters

	None –

	Returns

	

	Return type

	None

Notes

A solid bond is considered between two atoms if the connection [https://pyscal.readthedocs.io/en/latest/solidliquid.html]
between them is greater than 0.6.

	
calculate_sro(reference_type=1, average=True, shells=2)

	Calculate short range order

	Parameters

	
	reference_type (int, optional) – type of the atom to be used a reference. default 1

	average (bool, optional) – if True, average over all atoms of the reference type in the system.
default True.

	Returns

	vec – The short range order averaged over the whole system for atom of
the reference type. Only returned if average is True. First value is SRO
of the first neighbor shell and the second value corresponds to the second
nearest neighbor shell.

	Return type

	list of float

Notes

Calculates the short range order for an AB alloy using the approach by
Cowley [1]. Short range order is calculated as,

\[\alpha_i = 1 - \frac{n_i}{m_A c_i}\]

where n_i is the number of atoms of the non reference type among the c_i atoms
in the ith shell. m_A is the concentration of the non reference atom. Please
note that the value is calculated for shells 1 and 2 by default. In order for
this to be possible, neighbors have to be found first using the find_neighbors()
method. The selected neighbor method should include the second shell as well. For this
purpose method=cutoff can be chosen with a cutoff long enough to include the second
shell. In order to estimate this cutoff, one can use the calculate_rdf()
method.

References

	1

	Cowley J. M., PR 77(5), 1950.

	
calculate_vorovector(edge_cutoff=0.05, area_cutoff=0.01, edge_length=False)

	get the voronoi structure identification vector.

	Parameters

	edge_cutoff (float, optional) – cutoff for edge length. Default 0.05.

	area_cutofffloat, optional
	cutoff for face area. Default 0.01.

	edge_lengthbool, optional
	if True, a list of unrefined edge lengths are returned. Default false.

	Returns

	vorovector – array of the form (n3, n4, n5, n6)

	Return type

	array like, int

Notes

Returns a vector of the form (n3, n4, n5, n6), where n3 is the number
of faces with 3 vertices, n4 is the number of faces with 4
vertices and so on. This can be used to identify structures [1] [2].

The keywords edge_cutoff and area_cutoff can be used to tune the values to minimise
the effect of thermal distortions. Edges are only considered in the analysis if the
edge_length/sum(edge_lengths) is at least edge_cutoff. Similarly, faces are only
considered in the analysis if the face_area/sum(face_areas) is at least face_cutoff.

References

	1

	Finney, JL, Proc. Royal Soc. Lond. A 319, 1970

	2

	Tanemura, M, Hiwatari, Y, Matsuda, H,Ogawa, T, Ogita, N, Ueda, A. Prog. Theor. Phys. 58, 1977

	
cluster_atoms(condition, largest=True, cutoff=0)

	Cluster atoms based on a property

	Parameters

	
	condition (callable or atom property) – Either function which should take an Atom object, and give a True/False output
or an attribute of atom class which has value or 1 or 0.

	largest (bool, optional) – If True returns the size of the largest cluster. Default False.

	cutoff (float, optional) – If specified, use this cutoff for calculation of clusters. By default uses the cutoff
used for neighbor calculation.

	Returns

	lc – Size of the largest cluster. Returned only if largest is True.

	Return type

	int

Notes

This function helps to cluster atoms based on a defined property. This property
is defined by the user through the argument condition which is passed as a parameter.
condition can be of two types. The first type is a function which takes an
Atom object and should give a True/False value. condition can also be an
Atom attribute or a value from custom values stored in an atom.

When clustering, the code loops over each atom and its neighbors. If the
condition is true for both host atom and the neighbor, they are assigned to
the same cluster. For example, a condition to cluster solid atoms would be,

def condition(atom):
 #if both atom is solid
 return (atom1.solid)

The same can be done by passing “solid” as the condition argument instead of the above
function. Passing a function allows to evaluate complex conditions, but is slower than
passing an attribute.

	
embed_in_cubic_box()

	Embedded the triclinic box in a cubic box

	
extract_cubic_box(repeat=(3, 3, 3))

	Extract a cubic representation of the box from triclinic cell

	Parameters

	repeat (list of ints) – the number of times box should be repeat

	Returns

	
	cubebox (list of list of floats) – cubic box

	atoms (list of Atom objects) – atoms in the cubic box

	
find_diamond_neighbors()

	Find underlying fcc lattice in diamond

	Parameters

	None –

	Returns

	

	Return type

	None

Notes

This method finds in the underlying fcc/hcp lattice in diamond. It works
by the method described in this publication [http://dx.doi.org/10.1016/j.cpc.2016.04.001] .
For each atom, 4 atoms closest to it are identified. The neighbors of the its neighbors
are further identified and the common neighbors shared with the host atom are selected.
These atom will fall in the underlying fcc lattice for cubic diamond or hcp lattice
for hexagonal lattice.

If neighbors are previously calculated, they are reset when this method is used.

	
find_largestcluster()

	Find the largest solid cluster of atoms in the system from all the clusters.

	Parameters

	None –

	Returns

	cluster – the size of the largest cluster

	Return type

	int

Notes

pyscal.core.System.find_clusters() has to be used before using this function.

	
find_neighbors(method='cutoff', cutoff=None, threshold=2, filter=None, voroexp=1, padding=1.2, nlimit=6, cells=False, nmax=12, assign_neighbor=True)

	Find neighbors of all atoms in the System.

	Parameters

	method ({'cutoff', 'voronoi', 'number'}) – cutoff method finds neighbors of an atom within a specified or adaptive cutoff distance from the atom.
voronoi method finds atoms that share a Voronoi polyhedra face with the atom. Default, cutoff
number method finds a specified number of closest neighbors to the given atom. Number only populates

	cutoff{ float, ‘sann’, ‘adaptive’}
	the cutoff distance to be used for the cutoff based neighbor calculation method described above.
If the value is specified as 0 or adaptive, adaptive method is used.
If the value is specified as sann, sann algorithm is used.

	thresholdfloat, optional
	only used if cutoff=adaptive. A threshold which is used as safe limit for calculation of cutoff.

	filter{‘None’, ‘type’, ‘type_r’}, optional
	apply a filter to nearest neighbor calculation. If the filter keyword is set to
type, only atoms of the same type would be included in the neighbor calculations.
If type_r, only atoms of a different type will be included in the calculation. Default None.

	voroexpint, optional
	only used if method=voronoi. Power of the neighbor weight used to weight the contribution of each atom towards
Steinhardt parameter values. Default 1.

	paddingdouble, optional
	only used if cutoff=adaptive or cutoff=number. A safe padding value used after an adaptive cutoff is found. Default 1.2.

	nlimitint, optional
	only used if cutoff=adaptive. The number of particles to be considered for the calculation of adaptive cutoff.
Default 6.

	nmaxint, optional
	only used if cutoff=number. The number of closest neighbors to be found for each atom. Default 12

	Returns

	

	Return type

	None

	Raises

	
	RuntimeWarning – raised when threshold value is too low. A low threshold value will lead to ‘sann’ algorithm not converging
 when finding a neighbor. This function will try to automatically increase threshold and check again.

	RuntimeError – raised when neighbor search was unsuccessful. This is due to a low threshold value.

Notes

This function calculates the neighbors of each particle. There are several ways to do this. A complete description of
the methods can be found here [https://pyscal.readthedocs.io/en/latest/nearestneighbormethods.html].

Method cutoff and specifying a cutoff radius uses the traditional approach being the one in which the neighbors of an atom
are the ones that lie in the cutoff distance around it.

In order to reduce time during the distance sorting during the adaptive methods, pyscal sets an initial guess for a cutoff distance.
This is calculated as,

\[r_{initial} = threshold * (simulation~box~volume/ number~of~particles)^{(1/3)}\]

threshold is a safe multiplier used for the guess value and can be set using the threshold keyword.

In Method cutoff, if cutoff='adaptive', an adaptive cutoff is found during runtime for each atom [1].
Setting the cutoff radius to 0 also uses this algorithm. The cutoff for an atom i is found using,

\[r_c(i) = padding * ((1/nlimit) * \sum_{j=1}^{nlimit}(r_{ij}))\]

padding is a safe multiplier to the cutoff distance that can be set through the keyword padding. nlimit keyword sets the
limit for the top nlimit atoms to be taken into account to calculate the cutoff radius.

In Method cutoff, if cutoff='sann', sann algorithm is used [2]. There are no parameters to tune sann algorithm.

The second approach is using Voronoi polyhedra which also assigns a weight to each neighbor in the ratio of the face area between the two atoms.
Higher powers of this weight can also be used [3]. The keyword voroexp
can be used to set this weight.

If method os number, instead of using a cutoff value for finding neighbors, a specified number of closest atoms are
found. This number can be set through the argument nmax.

Warning

Adaptive and number cutoff uses a padding over the intial guessed “neighbor distance”. By default it is 2. In case
of a warning that threshold is inadequate, this parameter should be further increased. High/low value
of this parameter will correspond to the time taken for finding neighbors.

References

	1

	Stukowski, A, Model Simul Mater SC 20, 2012

	2

	van Meel, JA, Filion, L, Valeriani, C, Frenkel, D, J Chem Phys 234107, 2012

	3

	Haeberle, J, Sperl, M, Born, P, arxiv 2019

	
find_solids(bonds=0.5, threshold=0.5, avgthreshold=0.6, cluster=True, q=6, cutoff=0, right=True)

	Distinguish solid and liquid atoms in the system.

	Parameters

	
	bonds (int or float, optional) – Minimum number of solid bonds for an atom to be identified as
a solid if the value is an integer. Minimum fraction of neighbors
of an atom that should be solid for an atom to be solid if the
value is float between 0-1. Default 0.5.

	threshold (double, optional) – Solid bond cutoff value. Default 0.5.

	avgthreshold (double, optional) – Value required for Averaged solid bond cutoff for an atom to be identified
as solid. Default 0.6.

	cluster (bool, optional) – If True, cluster the solid atoms and return the number of atoms in the largest
cluster.

	q (int, optional) – The Steinhardt parameter value over which the bonds have to be calculated.
Default 6.

	cutoff (double, optional) – Separate value used for cluster classification. If not specified, cutoff used
for finding neighbors is used.

	right (bool, optional) – If true, greater than comparison is to be used for finding solid particles.
default True.

	Returns

	solid – Size of the largest solid cluster. Returned only if cluster=True.

	Return type

	int

Notes

The neighbors should be calculated before running this function.
Check find_neighbors() method.

bonds define the number of solid bonds of an atom to be identified as solid.
Two particles are said to be ‘bonded’ if [1],

\[s_{ij} = \sum_{m=-6}^6 q_{6m}(i) q_{6m}^*(i) \geq threshold\]

where threshold values is also an optional parameter.

If the value of bonds is a fraction between 0 and 1, at least that much of an atom’s neighbors
should be solid for the atom to be solid.

An additional parameter avgthreshold is an additional parameter to improve solid-liquid distinction.
In addition to having a the specified number of bonds,

\[\langle s_{ij} \rangle > avgthreshold\]

also needs to be satisfied. In case another q value has to be used for calculation of S_ij, it can be
set used the q attribute. In the above formulations, > comparison for threshold and avgthreshold
can be changed to < by setting the keyword right to False.

If cluster is True, a clustering is done for all solid particles. See find_clusters()
for more details.

References

	1

	Auer, S, Frenkel, D. Adv Polym Sci 173, 2005

	
get_atom(index)

	Get the Atom object at the queried position in the list of all atoms
in the System.

	Parameters

	index (int) – index of required atom in the list of all atoms.

	Returns

	atom – atom object at the queried position.

	Return type

	Atom object

	
get_concentration()

	Return a dict containing the concentration of the system

	Parameters

	None –

	Returns

	condict – dict of concentration values

	Return type

	dict

	
get_custom(atom, customkeys)

	Get a custom attribute from Atom

	Parameters

	
	atom (Atom object) –

	customkeys (list of strings) – the list of keys to be found

	Returns

	vals – array of custom values

	Return type

	list

	
get_distance(atom1, atom2, vector=False)

	Get the distance between two atoms.

	Parameters

	
	atom1 (Atom object) – first atom

	atom2 (Atom object) – second atom

	vector (bool, optional) – If True, the displacement vector connecting the atoms
is also returned. default false.

	Returns

	distance – distance between the first and second atom.

	Return type

	double

Notes

Periodic boundary conditions are assumed by default.

	
get_qvals(q, averaged=False)

	Get the required q_l (Steinhardt parameter) values of all atoms.

	Parameters

	
	q_l (int or list of ints) – required q_l value with l from 2-12

	averaged (bool, optional) – If True, return the averaged q values, default False

	Returns

	qvals – list of q_l of all atoms.

	Return type

	list of floats

Notes

The function returns a list of
q_l values in the same order as the list of the atoms in the system.

	
identify_diamond(find_neighbors=True)

	Identify diamond structure

	Parameters

	find_neighbors (bool, optional) – If True, find 4 closest neighbors

	Returns

	diamondstructure – dict of structure signature

	Return type

	dict

Notes

Identify diamond structure using the algorithm mentioned in [1]. It is an
extended CNA method. The integers 5, 6, 7, 8, 9 and 10 are assigned to the
structure variable of the atom. 5 stands for cubic diamond, 6 stands for first
nearest neighbors of cubic diamond and 7 stands for second nearest neighbors
of cubic diamond. 8 signifies hexagonal diamond, the first nearest neighbors
are marked with 9 and second nearest neighbors with 10.

References

	1

	Maras et al, CPC 205, 2016

	
iter_atoms()

	Iter over atoms

	
read_inputfile(filename, format='lammps-dump', compressed=False, customkeys=None)

	Read input file that contains the information of system configuration.

	Parameters

	
	filename (string) – name of the input file.

	format ({'lammps-dump', 'poscar', 'ase', 'mdtraj'}) – format of the input file, in case of ase the ASE Atoms object

	compressed (bool, optional) – If True, force to read a gz compressed format, default False.

	customkeys (list) – A list containing names of headers of extra data that needs to be read in from the
input file.

	Returns

	

	Return type

	None

Notes

format keyword specifies the format of the input file. Currently only
a lammps-dump and poscar files are supported. Additionaly, the widely
use Atomic Simulation environment (https://wiki.fysik.dtu.dk/ase/ase/ase.html).
mdtraj objects (http://mdtraj.org/1.9.3/) are also supported by using the keyword
‘mdtraj’ for format. Please note that triclinic boxes are not yet supported for
mdtraj format.
Atoms object can also be used directly. This function uses the
traj_process() module to process a file which is then assigned to system.

compressed keyword is not required if a file ends with .gz extension, it is
automatically treated as a compressed file.

Triclinic simulation boxes can also be read in.

If custom_keys are provided, this extra information is read in from input files if
available. This information is not passed to the C++ instance of atom, and is stored
as a dictionary. It can be accessed directly as atom.custom[‘customval’]

	
remap_atoms(remove_images=True, assign=True, remove_atoms=False, dtol=0.1)

	Remap atom back into simulation box

	Parameters

	
	pbc (bool, optional) – If True, remove atoms on borders that are repeated

	assign (bool, optional) – If True, assign atoms to the system, otherwise return.

	remove_atoms (bool, optional) – If True, after the atoms, are remapped, remove those still
outside the box.

	rtol (float, optional) – Tolerance for removing atomic positions. Defaullt 0.1

	
repeat(reps, atoms=None, ghost=False, scale_box=True)

	Replicate simulation cell

	Parameters

	
	reps (list of ints of size 3) – repetitions in each direction

	atoms (list of atoms, optional) – if not provided, use atoms that are assigned

	ghost (bool, optional) – If True, assign the new atoms as ghost instead of actual atoms

	
reset_neighbors()

	Reset the neighbors of all atoms in the system.

	Parameters

	None –

	Returns

	

	Return type

	None

Notes

It is used automatically when neighbors are recalculated.

	
set_atom(atom)

	Return the atom to its original location after modification.

	Parameters

	atom (Atom) – atom to be replaced

	Returns

	

	Return type

	None

Notes

For example, an Atom at location i in the list of all atoms in
System can be queried by,
atom = System.get_atom(i), then any kind of modification, for example, the
position of the Atom can done by, atom.pos = [2.3, 4.5, 4.5]. After
modification, the Atom can be set back to its position in System by
set_atom().

Although the complete list of atoms can be accessed or set using atoms = sys.atoms,
get_atom and set_atom functions should be used for accessing individual atoms.
If an atom already exists at that index in the list, it will be overwritten and will
lead to loss of information.

	
set_atom_cutoff(factor=1.0)

	Set cutoff for each atom

	Parameters

	factor (float, optional) – factor for multiplication of cutoff value.
default 1

	Returns

	

	Return type

	None

Notes

Assign cutoffs for each atom based on the nearest
neighbor distance. The cutoff assigned is the average nearest
neighbor distance multiplied by factor.

	
show(colorby=None, filterby=None)

	Plot the system

	Parameters

	
	sys (System object) –

	colorby (string, optional) – property over which the atoms are to be colored. It can be any
attributed of Atom, a custom attribute, or calculated q values which can be accessed
as qx or aqx where x stands for the q number.

	filterby (string, optional) – property over which the atoms are to be filtered before plotting.
It can be any attribute of atom, or a custom value of atom. It should provide
a True or False value.

	Returns

	

	Return type

	None

	
to_ase(species)

	Convert system to an ASE Atoms object

	Parameters

	species (list of string) – The chemical species

	Returns

	

	Return type

	None

	
to_file(outfile, format='lammps-dump', customkeys=None, customvals=None, compressed=False, timestep=0, species=None)

	Save the system instance to a trajectory file.

	Parameters

	
	outfile (string) – name of the output file

	format (string, {'lammps-dump', 'lammps-data', 'poscar'}) – format of the output file, default lammps-dump
Currently only lammps-dump format is supported.

	customkeys (list of strings, optional) – a list of extra atom wise values to be written in the output file.

	customvals (list or list of lists, optional) – If customkey is specified, customvals take an array of the same length
as number of atoms, which contains the values to be written out.

	compressed (bool, optional) – If true, the output is written as a compressed file.

	timestep (int, optional) – timestep to be written to file. default 0

	species (None, optional) – species of the atoms. Required if any format other than ‘lammps-dump’ is used. Required
for convertion to ase object.

	Returns

	

	Return type

	None

Notes

to_file method can handle a number of file formats. The most customizable format is the
lammps-dump which can take a custom options using customkeys and customvals. customkeys
will be the header written to the dump file. It can be any Atom attribute, any property
stored in custom variable of the Atom, or calculated q values which can be given by q4,
aq4 etc. External values can also be provided using customvals option. customvals array
should be of the same length as the number of atoms in the system.

For all other formats, ASE is used to write out the file, and hence the species keyword
needs to be specified. If initially, an ASE object was used to create the System, species
keyword will already be saved, and need not be specified. In other cases, species should
be a list of atomic species in the System. For example [“Cu”] or [“Cu”, “Al”], depending
on the number of species in the System. In the above case, atoms of type 1 will be mapped to
Cu and of type 2 will be mapped to Al. For a complete list of formats that ASE can handle,
see here [https://wiki.fysik.dtu.dk/ase/ase/io/io.html] .

	
pyscal.core.test()

	A simple function to test if the module works

	Parameters

	None –

	Returns

	works – True if the module works and could create a System and Atom object
False otherwise.

	Return type

	bool

	
class pyscal.catom.Atom

	Bases: pybind11_builtins.pybind11_object

Class to store atom details.

	Parameters

	
	pos (list of floats of length 3) – position of the Atom, default [0,0,0]

	id (int) – id of the Atom, default 0

	type (int) – type of the Atom, default 1

Notes

A pybind11 class for holding the properties of a single atom. Various properties of the atom
can be accessed through the attributes and member functions which are described below in detail. Atoms can
be created individually or directly by reading a file. Check the examples for more
details on how atoms are created. For creating atoms directly from an input file check
the documentation of System class.

Although an Atom object can be created independently, Atom should be thought of
inherently as members of the System class. All the properties that define an atom are
relative to the parent class. System has a list of all atoms. All the properties of an
atom, hence should be calculated through System.

Examples

>>> #method 1 - individually
>>> atom = Atom()
>>> #now set positions of the atoms
>>> atom.pos = [23.0, 45.2, 34.2]
>>> #now set id
>>> atom.id = 23
>>> #now set type
>>> atom.type = 1
>>> #Setting through constructor
>>> atom = Atom([23.0, 45.2, 34.2], 23, 1)

References

Creation of atoms [https://pyscal.readthedocs.io/en/latest/examples.html].

	
__init__()

	

	
property allaq

	list of floats.
list of all averaged q values of the atom.

	
property allq

	list of floats.
list of all q values of the atom.

	
property angular

	Float.
The value of angular parameter A of an atom. The angular parameter measures the tetrahedral coordination of an atom.
Meaningful values are only returned if the property is calculated using calculate_angularcriteria().

	
property avg_angular

	Float.
The average angular parameter value. Not used currently.

	
property avg_disorder

	Float.
The value of averaged disorder parameter.

	
property avg_energy

	Float.
Value of averaged energy.

	
property avg_entropy

	Float.
Value of averaged entropy parameter.

	
property avg_sij

	float. Value of averaged s_ij which is used for identification of solid atoms. s_ij is defined by

\[s_{ij} = \sum_{m=-l}^l q_{lm}(i) q_{lm}^*(i)\]

	
property avg_volume

	float. Averaged version of the Voronoi volume which is calculated as an average over
itself and its neighbors. Only calculated when the find_neighbors()
using the method=’voronoi’ option is used.

	
property bonds

	

	
property centrosymmetry

	Float.
The value of centrosymmetry parameter.

	
property chiparams

	Float.
The value of chiparameter of an atom. The return value is a vector of length 8.
Meaningful values are only returned if chi params are calculated using calculate_chiparams().

	
property cluster

	int.
identification number of the cluster that the atom belongs to.

	
property cna

	

	
property common

	

	
property condition

	int.
condition that specifies if an atom is included in the clustering algorithm or not.
Only atoms with the value of condition=1 will be used for clustering in
cluster_atoms().

	
property coordination

	int.
coordination number of the atom. Coordination will only be updated
after neighbors are calculated using find_neighbors().

	
property custom

	dict.
dictionary specfying custom values for an atom. The module only stores the id, type and
position of the atom. If any extra values need to be stored, they can be stored in custom
using atom.custom = {“velocity”:12}. read_inputfile() can also
read in extra atom information. By default, custom values are treated as string.

	
property cutoff

	double.
cutoff used for finding neighbors for each atom.

	
property disorder

	Float.
The value of disorder parameter.

	
property edge_lengths

	list of floats. For each face, this vector contains the lengths of edges
that make up the Voronoi polyhedra of the atom. Only calculated when the find_neighbors()
using the method=’voronoi’ option is used.

	
property energy

	Float.
Value of energy.

	
property entropy

	Float.
Value of entropy parameter.

	
property face_perimeters

	list of floats. List consisting of the perimeters of each Voronoi face of an atom.
Only calculated when the find_neighbors()
using the method=’voronoi’ option is used.

	
property face_vertices

	list of floats. A list of the number of vertices shared between an atom and its
neighbors. Only calculated when the find_neighbors()
using the method=’voronoi’ option is used.

	
get_q()

	Calculate the steinhardt parameter q_l value.

	Parameters

	
	q (int or list of ints) – number of the required q_l - from 2-12

	averaged (bool, optional) – If True, return the averaged q values,
If False, return the non averaged ones
default False

	Returns

	q_l – the value(s) of the queried Steinhardt parameter(s).

	Return type

	float or list of floats

Notes

Please check this link [https://pyscal.readthedocs.io/en/latest/steinhardtparameters.html]
for more details about Steinhardts parameters and the averaged versions.

Meaningful values are only returned if calculate_q() is used.

	
get_qlm()

	Get the q_lm values.

	Parameters

	
	q (int) – number of the required q_l - from 2-12

	averaged (bool, optional) – If True, return the averaged qlm values,
If False, return the non averaged ones
default False

	Returns

	
	q_lm (complex vector) – vector of complex numbers.

	Meaningful values are only returned if calculate_q() is used.

	
property ghost

	int.
int specifying ghost status of the atom.

	
property id

	int.
Id of the atom.

	
property largest_cluster

	bool.
True if the atom belongs to the largest cluster, False otherwise. Largest cluster is only identified
after using the cluster_atoms() function.

	
property loc

	int.
indicates the position of the atom in the list of all atoms.

	
property local_angles

	List of floats of length 2.
List of longitude and colatitude of an atom to its neighbors.

	
property mask

	bool.
Mask variable for atom. If mask is true, the atom is ignored from calculations.

	
property neighbor_distance

	List of floats.
List of neighbor distances of the atom.

	
property neighbor_vector

	List of floats of length 3.
List of vectors connecting an atom to its neighbors.

	
property neighbor_weights

	List of floats.
Used to weight the contribution of each neighbor atom towards the value of
Steinhardt’s parameters. By default, each atom has a weight of 1 each. However,
if find_neighbors() is used with method=’voronoi’,
each neighbor gets a weight proportional to the area shared between the neighboring
atom and host atom.

	
property neighbors

	List of ints.
List of neighbors of the atom. The list contains indices of neighbor
atoms which indicate their position in the list of all atoms.

	
property next_neighbor_distances

	double.
cutoff used for finding neighbors for each atom.

	
property next_neighbors

	double.
cutoff used for finding neighbors for each atom.

	
property pos

	List of floats of the type [x, y, z], default [0, 0, 0].
Position of the atom.

	
set_q()

	Set the value of steinhardt parameter q_l.

	Parameters

	
	q (int or list of ints) – number of the required q_l - from 2-12

	val (float or list of floats) – value(s) of Steinhardt parameter(s).

	averaged (bool, optional) – If True, return the averaged q values,
If False, return the non averaged ones
default False

	Returns

	

	Return type

	None

	
property sij

	float. Value of s_ij which is used for identification of solid atoms. s_ij is defined by

\[s_{ij} = \sum_{m=-l}^l q_{lm}(i) q_{lm}^*(i)\]

	
property solid

	bool.
True if the atom is solid, False otherwise. Solid atoms are only identified
after using the find_solids() function.

	
property sro

	Float.
The value of short range order parameter.

	
property structure

	int.
Indicates the structure of atom. Not used currently.

	
property surface

	bool.
True if the atom has at least one liquid neighbor, False otherwise. Surface atoms are only identified
after using the find_solids() function.

	
property type

	int.
int specifying type of the atom.

	
property vertex_numbers

	list of floats. For each Voronoi face of the atom, this values includes a List
of vertices that constitute the face. Only calculated when the find_neighbors()
using the method=’voronoi’ option is used.

	
property vertex_positions

	list of list of floats. Positions of Voronoi vertices. Only calculated when the find_neighbors()
using the method=’voronoi’ option is used.

	
property vertex_vectors

	list of floats. A list of positions of each vertex of the Voronoi polyhedra of
the atom. Only calculated when the find_neighbors()
using the method=’voronoi’ option is used.

	
property volume

	float. Voronoi volume of the atom. The Voronoi volume is only calculated if neighbors
are found using the find_neighbors() using the method=’voronoi’
option.

	
property vorovector

	list of ints. A vector of the form (n3, n4, n5, n6) where n3 is the number of faces with 3 vertices,
n4 is the number of faces with 4 vertices and so on. This can be used to identify structures [1][2].
Vorovector is calculated if the calculate_vorovector() method is used.

References

	1

	Finney, JL, Proc. Royal Soc. Lond. A 319, 1970

	2

	Tanemura, M, Hiwatari, Y, Matsuda, H,Ogawa, T, Ogita, N, Ueda, A. Prog. Theor. Phys. 58, 1977

pyscal.crystal_structures module

pyscal module for creating crystal structures.

	
pyscal.crystal_structures.make_crystal(structure, lattice_constant=1.0, repetitions=None, ca_ratio=1.633, noise=0)

	Create a basic crystal structure and return it as a list of Atom objects
and box dimensions.

	Parameters

	
	structure ({'sc', 'bcc', 'fcc', 'hcp', 'diamond', 'a15' or 'l12'}) – type of the crystal structure

	lattice_constant (float, optional) – lattice constant of the crystal structure, default 1

	repetitions (list of ints of len 3, optional) – of type [nx, ny, nz], repetions of the unit cell in x, y and z directions.
default [1, 1, 1].

	ca_ratio (float, optional) – ratio of c/a for hcp structures, default 1.633

	noise (float, optional) – If provided add normally distributed noise with standard deviation noise to the atomic positions.

	Returns

	
	atoms (list of Atom objects) – list of all atoms as created by user input

	box (list of list of floats) – list of the type [[xlow, xhigh], [ylow, yhigh], [zlow, zhigh]] where each of them are the lower
and upper limits of the simulation box in x, y and z directions respectively.

Examples

>>> atoms, box = make_crystal('bcc', lattice_constant=3.48, repetitions=[2,2,2])
>>> sys = System()
>>> sys.assign_atoms(atoms, box)

pyscal.trajectory module

	
class pyscal.trajectory.Timeslice(trajectory, blocklist)

	Bases: object

Timeslice containing info about a single time slice
Timeslices can also be added to each

	
__init__(trajectory, blocklist)

	Initialize instance with data

	
to_ase(species=None)

	Get block as Ase objects

	Parameters

	blockno (int) – number of the block to be read, starts from 0

	Returns

	sys

	Return type

	ASE object

	
to_dict()

	Get the required block as data

	
to_file(outfile, mode='w')

	Get block as outputfile

	Parameters

	
	outfile (string) – name of output file

	mode (string) – write mode to be used, optional
default “w” write
also can be “a” to append.

	Returns

	

	Return type

	None

	
to_system(customkeys=None)

	Get block as pyscal system

	Parameters

	blockno (int) – number of the block to be read, starts from 0

	Returns

	sys – pyscal System

	Return type

	System

	
class pyscal.trajectory.Trajectory(filename)

	Bases: object

A Trajectory class for LAMMPS

	
__init__(filename)

	Initiaze the class

	Parameters

	
	filename (string) – name of the inputfile

	customkeys (list of string) – keys other than position, id that needs to be read
in from the input file

	
get_block(blockno)

	Get a block from the file as raw data

	Parameters

	blockno (int) – number of the block to be read, starts from 0

	Returns

	data – list of strings containing data

	Return type

	list

	
load(blockno)

	Load the data of a block into memory as a dictionary
of numpy arrays

	Parameters

	blockno (int) – number of the block to be read, starts from 0

	Returns

	

	Return type

	None

Notes

When the data of a block is loaded, it is accessible
through Trajectory.data[x]. This data can then be
modified. When the block is written out, the modified
data is written instead of existing one. But, loaded
data is kept in memory until unloaded using unload
method.

	
unload(blockno)

	Unload the data that is loaded to memory using
load method

	Parameters

	blockno (int) – number of the block to be read, starts from 0

	Returns

	

	Return type

	None

pyscal.traj_process module

pyscal module containing methods for processing of a trajectory. Methods for
reading of input files formats, writing of output files etc are provided in
this module.

	
pyscal.traj_process.read_file(filename, format='lammps-dump', compressed=False, customkeys=None)

	Read input file

	Parameters

	
	filename (string) – name of the input file.

	format ({'lammps-dump', 'poscar', 'ase', 'mdtraj'}) – format of the input file, in case of ase the ASE Atoms object

	compressed (bool, optional) – If True, force to read a gz compressed format, default False.

	customkeys (list) – A list containing names of headers of extra data that needs to be read in from the
input file.

	Returns

	

	Return type

	None

	
pyscal.traj_process.split_trajectory(infile, format='lammps-dump', compressed=False)

	Read in a trajectory file and convert it to individual time slices.

	Parameters

	
	filename (string) – name of input file

	format (format of the input file) – only lammps-dump is supported now.

	compressed (bool, optional) – force to read a gz zipped file. If the filename ends with .gz, use of this keyword is not
necessary.

	Returns

	snaps – a list of filenames which contain individual frames from the main trajectory.

	Return type

	list of strings

Notes

This is a wrapper function around split_traj_lammps_dump function.

	
pyscal.traj_process.write_file(sys, outfile, format='lammps-dump', compressed=False, customkeys=None, customvals=None, timestep=0, species=None)

	Write the state of the system to a trajectory file.

	Parameters

	
	sys (System object) – the system object to be written out

	outfile (string) – name of the output file

	format (string, optional) – format of the output file

	compressed (bool, default false) – write a .gz format

	customkey (string or list of strings, optional) – If specified, it adds this custom column to the dump file. Default None.

	customvals (list or list of lists, optional) – If customkey is specified, customvals take an array of the same length
as number of atoms, which contains the values to be written out.

	timestep (int, optional) – Specify the timestep value, default 0

	species (None, optional) – species of the atoms. Required if any format other than ‘lammps-dump’ is used. Required
for convertion to ase object.

	Returns

	

	Return type

	None

pyscal.misc module

	
pyscal.misc.compare_atomic_env(infile, atomtype=2, precision=2, format='poscar', print_results=True, return_system=False)

	Compare the atomic environment of given types of atoms
in the inputfile. The comparison is made in terms of Voronoi
volume and Voronoi fingerprint.

	Parameters

	
	infile (string) – name of the inputfile

	atomtype (int, optional) – type of the atom
default 2

	precision (float, optional) – precision for comparing Voronoi volumes
default 3

	format (string, optional) – format of the input file
default poscar

	print_results (bool, optional) – if True, print the results. If False, return the data
instead. default True

	return_system (bool, optional) – if True, return the system object.
default False

	Returns

	
	vvx (list of floats) – unique Voronoi volumes. Returned only if print results is False

	vrx (list of strings) – unique Voronoi polyhedra. Returned only if print results is False

	vvc (list of ints) – number of unique quantities specified above. Returned only if print results is False

	
pyscal.misc.find_tetrahedral_voids(infile, format='poscar', print_results=True, return_system=False, direct_coordinates=True, precision=0.1)

	Check for tetrahedral voids in the system

	Parameters

	
	infile (string) – name of the input file

	format (string) – format of the input file, optional
default poscar

	print_results (bool, optional) – if True, print the results. If False, return the data
instead. default True

	return_system (bool, optional) – if True, return the system object.
default False

	direct_coordinates (bool, optional) – if True, results are provided in direct coordinates
default False

	precision (int, optional) – the number of digits to check for distances.
default 1

	Returns

	
	types (list of atom types)

	volumes (list of atom volumes)

	pos (list of atom positions)

	sys (system object, returns only if return_sys is True)

 Publications and Projects

Publications and Projects

	Publications using pyscal

	Projects using pyscal

 Publications using pyscal

Publications using pyscal

	Laurens, Gaétan, Jacek Goniakowski, and Julien Lam. “Non-Classical Nucleation of Zinc Oxide from a Physically-Motivated Machine-Learning Approach.” ArXiv:2108.10601 [Cond-Mat, Physics:Physics], August 24, 2021. [http://arxiv.org/abs/2108.10601]

	Menon, Sarath, Yury Lysogorskiy, Jutta Rogal, and Ralf Drautz. “Automated Free Energy Calculation from Atomistic Simulations.” ArXiv:2107.08980 [Cond-Mat], July 19, 2021. [http://arxiv.org/abs/2107.08980].

	Quentino, J. V., and P. A. F. P. Moreira. “Determining Neighborhood Phases in Hard-Sphere Systems Using Machine Learning.” The European Physical Journal B 94, no. 6 (June 2021): 130. [https://doi.org/10.1140/epjb/s10051-021-00140-9].

	Casillas-Trujillo, Luis, Ulf Jansson, Martin Sahlberg, Gustav Ek, Magnus M. Nygård, Magnus H. Sørby, Bjørn C. Hauback, Igor A. Abrikosov, and Björn Alling. “Interstitial Carbon in Bcc HfNbTiVZr High-Entropy Alloy from First Principles.” Physical Review Materials 4, no. 12 (December 2, 2020): 123601. [https://doi.org/10.1103/PhysRevMaterials.4.123601].

	Menon, Sarath, Grisell Díaz Leines, Ralf Drautz, and Jutta Rogal. “Role of Pre-Ordered Liquid in the Selection Mechanism of Crystal Polymorphs during Nucleation.” The Journal of Chemical Physics 153, no. 10 (September 14, 2020): 104508. [https://doi.org/10.1063/5.0017575].

	Gao, Xueyun, Haiyan Wang, Lei Xing, Cainv Ma, and Huiping Ren. “Evolution of Local Atomic Structure during Solidification of Fe-RE (RE=La, Ce) Alloy.” Journal of Non-Crystalline Solids 542 (August 2020): 120109. [https://doi.org/10.1016/j.jnoncrysol.2020.120109].

	Menon, Sarath, Grisell Leines, and Jutta Rogal. “Pyscal: A Python Module for Structural Analysis of Atomic Environments.” Journal of Open Source Software 4, no. 43 (November 1, 2019): 1824. [https://doi.org/10.21105/joss.01824].

 Projects using pyscal

Projects using pyscal

	calphy : A Python library and command line interface for automated free energy calculations.

	pyiron : pyiron - an integrated development environment (IDE) for computational materials science.

	Automated melting temperature calculation using Pyiron [https://github.com/pyiron/pyiron_meltingpoint] : A fully automated approach to determine the melting temperature of crystalline materials.

	Pyscal interactive session in Ab initio Description of Iron and Steel (ADIS2020): Diffusion and Precipitation workshop [https://github.com/pyiron/ADIS-workshop-2020]

 Support, contributing and extending

Support, contributing and extending

pyscal welcomes and appreciates contribution and extension to the
module. Rather than local modifications, we request that the
modifications be submitted through a pull request, so that the module
can be continuously improved.

Reporting and fixing bugs

In case a bug is found in the module, it can be reported on the issues
page of the repository [https://github.com/srmnitc/pyscal/issues]. After
clicking on the new issue button, there is template already provided for
Bug report. Please choose this and make sure the necessary fields are
filled. Once a bug is reported, the status can once again monitored on
the issues page. Additionally, you are of course very welcome to fix any
existing bugs.

New features

If you have an idea for new feature, you can submit a feature idea
through the issues page of the
repository [https://github.com/srmnitc/pyscal/issues]. After choosing
new issue, please choose the template for feature request. As much as
information as you can provide about the new feauture would be greatly
helpful. Additionally, you could also work on feature requests already
on the issues page. The following instructions will help you get started
with local feature development.

Setting up local environment

	The first step is to fork pyscal. A detailed tutorial on forking can
be found here [https://help.github.com/en/articles/fork-a-repo].
After forking, clone the repository to your local machine.

	We recommend creating a virtual environment to test new features or
improvements to features. See this
link [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html]
for help on managing environments.

	Once the environment is set up, you can create a new branch for your
feature by git checkout -b new_feauture.

	Now implement the necessary feature.

	Once done, you can reinstall pyscal by python setup.py install.
After that please make sure that the existing tests work by running
pytest tests/ from the main module folder.

	If the tests work, you are almost done! If the new feature is not
covered in existing tests, you can to write a new test in the tests
folder. pyscal uses pytest for tests. This
link [http://doc.pytest.org/en/latest/getting-started.html] will
help you get started.

	Add the necessary docstrings for the new functions implemented.
pyscal uses the numpy docstring
format [https://numpydoc.readthedocs.io/en/latest/format.html] for
documentation.

	Bonus task: Set up few examples that document how the feature works
in the docs/source/ folder and link it to the examples section.

	Final step - Submit a pull request through github. Before you
submit, please make sure that the new feature is documented and has
tests. Once the request is submitted, automated tests would be done.
Your pull request will fail the tests if - the unit tests fail, or
if the test coverage falls below 80%. If all tests are successful,
your feauture will be incorporated to pyscal and your contributions
will be credited.

If you have trouble with any of the steps, or you need help, please
send an email and we will be happy to
help! All of the contributions are greatly appreciated and will be
credited in Developers/Acknowledgements page.

 Help and support

Help and support

In case of bugs and feature improvements, you are welcome to create a
new issue on the github repo [https://github.com/pyscal/pyscal]. You
are also welcome to fix a bug or implement a feature. Please see the
extending and
contributing [https://pyscal.readthedocs.io/en/latest/extending.html]
section for more details.

Any other questions or suggestions are welcome, please contact
us.

 Citing the code

Citing the code

If you use pyscal in your work, the citation of the following
article [https://joss.theoj.org/papers/10.21105/joss.01824] will be
greatly appreciated:

Sarath Menon, Grisell Díaz Leines and Jutta Rogal (2019). pyscal: A
python module for structural analysis of atomic environments. Journal of
Open Source Software, 4(43), 1824, <https://doi.org/10.21105/joss.01824

Click to copy citation in bib format [https://joss.theoj.org/papers/10.21105/joss.01824#].

 Acknowledgements

Acknowledgements

Developer

	Sarath
Menon [http://sarathmenon.me]

 License

License

pyscal License

pyscal uses the BSD 3-Clause New License [https://github.com/srmnitc/pyscal/blob/master/LICENSE] . A full description is
available in the above link or in the repository.

In addition, pyscal license of other codes that pyscal uses are
given below-

Voro++ license

Voro++ Copyright (c) 2008, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any
required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes,
patches, or upgrades to the features, functionality or performance of
the source code ("Enhancements") to anyone; however, if you choose to
make your Enhancements available either publicly, or directly to
Lawrence Berkeley National Laboratory, without imposing a separate
written license agreement for such Enhancements, then you hereby grant
the following license: a non-exclusive, royalty-free perpetual license
to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

pybind 11 license

Copyright (c) 2016 Wenzel Jakob (wenzel.jakob@epfl.ch), All rights
reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes,
patches, or upgrades to the features, functionality or performance of
the source code ("Enhancements") to anyone; however, if you choose to
make your Enhancements available either publicly, or directly to the
author of this software, without imposing a separate written license
agreement for such Enhancements, then you hereby grant the following
license: a non-exclusive, royalty-free perpetual license to install,
use, modify, prepare derivative works, incorporate into other computer
software, distribute, and sublicense such enhancements or derivative
works thereof, in binary and source code form.

sphinx theme license

Copyright (c) 2007-2013 by the Sphinx team (see AUTHORS file). All
rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyscal	

 	
 	
 pyscal.catom	

 	
 	
 pyscal.core	

 	
 	
 pyscal.crystal_structures	

 	
 	
 pyscal.misc	

 	
 	
 pyscal.traj_process	

 	
 	
 pyscal.trajectory	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (pyscal.catom.Atom method)

 	(pyscal.core.System method)

 	(pyscal.trajectory.Timeslice method)

 	(pyscal.trajectory.Trajectory method)

A

 	
 	add_atoms() (pyscal.core.System method)

 	allaq (pyscal.catom.Atom property)

 	allq (pyscal.catom.Atom property)

 	angular (pyscal.catom.Atom property)

 	Atom (class in pyscal.catom)

 	atoms (pyscal.core.System attribute)

 	(pyscal.core.System property)

 	
 	avg_angular (pyscal.catom.Atom property)

 	avg_disorder (pyscal.catom.Atom property)

 	avg_energy (pyscal.catom.Atom property)

 	avg_entropy (pyscal.catom.Atom property)

 	avg_sij (pyscal.catom.Atom property)

 	avg_volume (pyscal.catom.Atom property)

B

 	
 	bonds (pyscal.catom.Atom property)

 	
 	box (pyscal.core.System attribute)

 	(pyscal.core.System property)

C

 	
 	calculate_angularcriteria() (pyscal.core.System method)

 	calculate_centrosymmetry() (pyscal.core.System method)

 	calculate_chiparams() (pyscal.core.System method)

 	calculate_cna() (pyscal.core.System method)

 	calculate_disorder() (pyscal.core.System method)

 	calculate_energy() (pyscal.core.System method)

 	calculate_entropy() (pyscal.core.System method)

 	calculate_q() (pyscal.core.System method)

 	calculate_rdf() (pyscal.core.System method)

 	calculate_solidneighbors() (pyscal.core.System method)

 	calculate_sro() (pyscal.core.System method)

 	
 	calculate_vorovector() (pyscal.core.System method)

 	centrosymmetry (pyscal.catom.Atom property)

 	chiparams (pyscal.catom.Atom property)

 	cluster (pyscal.catom.Atom property)

 	cluster_atoms() (pyscal.core.System method)

 	cna (pyscal.catom.Atom property)

 	common (pyscal.catom.Atom property)

 	compare_atomic_env() (in module pyscal.misc)

 	condition (pyscal.catom.Atom property)

 	coordination (pyscal.catom.Atom property)

 	custom (pyscal.catom.Atom property)

 	cutoff (pyscal.catom.Atom property)

D

 	
 	disorder (pyscal.catom.Atom property)

E

 	
 	edge_lengths (pyscal.catom.Atom property)

 	embed_in_cubic_box() (pyscal.core.System method)

 	
 	energy (pyscal.catom.Atom property)

 	entropy (pyscal.catom.Atom property)

 	extract_cubic_box() (pyscal.core.System method)

F

 	
 	face_perimeters (pyscal.catom.Atom property)

 	face_vertices (pyscal.catom.Atom property)

 	find_diamond_neighbors() (pyscal.core.System method)

 	
 	find_largestcluster() (pyscal.core.System method)

 	find_neighbors() (pyscal.core.System method)

 	find_solids() (pyscal.core.System method)

 	find_tetrahedral_voids() (in module pyscal.misc)

G

 	
 	get_atom() (pyscal.core.System method)

 	get_block() (pyscal.trajectory.Trajectory method)

 	get_concentration() (pyscal.core.System method)

 	get_custom() (pyscal.core.System method)

 	
 	get_distance() (pyscal.core.System method)

 	get_q() (pyscal.catom.Atom method)

 	get_qlm() (pyscal.catom.Atom method)

 	get_qvals() (pyscal.core.System method)

 	ghost (pyscal.catom.Atom property)

I

 	
 	id (pyscal.catom.Atom property)

 	
 	identify_diamond() (pyscal.core.System method)

 	iter_atoms() (pyscal.core.System method)

L

 	
 	largest_cluster (pyscal.catom.Atom property)

 	load() (pyscal.trajectory.Trajectory method)

 	
 	loc (pyscal.catom.Atom property)

 	local_angles (pyscal.catom.Atom property)

M

 	
 	make_crystal() (in module pyscal.crystal_structures)

 	mask (pyscal.catom.Atom property)

 	
 module

 	pyscal.catom

 	pyscal.core

 	pyscal.crystal_structures

 	pyscal.misc

 	pyscal.traj_process

 	pyscal.trajectory

N

 	
 	neighbor_distance (pyscal.catom.Atom property)

 	neighbor_vector (pyscal.catom.Atom property)

 	neighbor_weights (pyscal.catom.Atom property)

 	
 	neighbors (pyscal.catom.Atom property)

 	next_neighbor_distances (pyscal.catom.Atom property)

 	next_neighbors (pyscal.catom.Atom property)

P

 	
 	pos (pyscal.catom.Atom property)

 	
 pyscal.catom

 	module

 	
 pyscal.core

 	module

 	
 pyscal.crystal_structures

 	module

 	
 	
 pyscal.misc

 	module

 	
 pyscal.traj_process

 	module

 	
 pyscal.trajectory

 	module

R

 	
 	read_file() (in module pyscal.traj_process)

 	read_inputfile() (pyscal.core.System method)

 	
 	remap_atoms() (pyscal.core.System method)

 	repeat() (pyscal.core.System method)

 	reset_neighbors() (pyscal.core.System method)

S

 	
 	set_atom() (pyscal.core.System method)

 	set_atom_cutoff() (pyscal.core.System method)

 	set_q() (pyscal.catom.Atom method)

 	show() (pyscal.core.System method)

 	sij (pyscal.catom.Atom property)

 	
 	solid (pyscal.catom.Atom property)

 	split_trajectory() (in module pyscal.traj_process)

 	sro (pyscal.catom.Atom property)

 	structure (pyscal.catom.Atom property)

 	surface (pyscal.catom.Atom property)

 	System (class in pyscal.core)

T

 	
 	test() (in module pyscal.core)

 	Timeslice (class in pyscal.trajectory)

 	to_ase() (pyscal.core.System method)

 	(pyscal.trajectory.Timeslice method)

 	to_dict() (pyscal.trajectory.Timeslice method)

 	
 	to_file() (pyscal.core.System method)

 	(pyscal.trajectory.Timeslice method)

 	to_system() (pyscal.trajectory.Timeslice method)

 	Trajectory (class in pyscal.trajectory)

 	type (pyscal.catom.Atom property)

U

 	
 	unload() (pyscal.trajectory.Trajectory method)

V

 	
 	vertex_numbers (pyscal.catom.Atom property)

 	vertex_positions (pyscal.catom.Atom property)

 	
 	vertex_vectors (pyscal.catom.Atom property)

 	volume (pyscal.catom.Atom property)

 	vorovector (pyscal.catom.Atom property)

W

 	
 	write_file() (in module pyscal.traj_process)

 Trajectory tests

Trajectory tests

Compare speed of processing LAMMPS trajectories using different modules

[10]:

import pyscal.core as pc
from pyscal.core import Trajectory
import pyscal.traj_process as ptp
import dask.bag as db
from ase.io import read
import matplotlib.pyplot as plt

Approach 1 - pyscal.traj_process

Use pyscal traj_process to split the file. Reading is done in a second step.

[3]:

%%timeit
files = ptp.split_trajectory("traj.light")

3.37 ms ± 397 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Advantages

	Quite fast

	Does not read the complete file into memory

Disadvantages

	Creates a number of small files into which the larger file is written

	Affects the hard disk space

Approach 2 - dask.bag

Reading the file in dask is a two step approach. First a lazy iterator is created, then the data is computed.

[4]:

bag = db.read_text("traj.light")

[5]:

%%timeit
x = bag.compute()

474 ms ± 44 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Advantages

	None

Disadvantages

	Super slow

	Reads the whole file at the same time

Approach 3 - ase.io.read

[6]:

%%timeit
d = read("traj.light", index=":", format="lammps-dump-text")

39 ms ± 953 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Advantages

	No temporary files created

	Reasonably fast

Disadvantages

	Reads the whole file at the same time

	Cannot write dump files

Approach 4 - Trajectory class from pyscal

The Trajectory class creates a object which gets basic information about the file without reading in the file at all. The reading is only done as when required.

[7]:

traj = Trajectory("traj.light")

Trajectory module supports indexing

[8]:

sl = traj[:]

[9]:

%%timeit
sl.to_file("dump")

2.62 ms ± 45.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Advantages

	Fastest approach

	At most only one snapshot is kept in memory

	No temporary files

Disadvantages

	Only supports lammps files

[15]:

times = [3.37, 474, 39, 2.62]
names = ["traj_process", "dask", "ase", "Trajectory"]
plt.bar(range(len(times)), times, log=True, tick_label=names)
plt.ylabel("Time (ms)")

[15]:

Text(0, 0.5, 'Time (ms)')

[image: ../_images/examples_prototype_files_19_1.png]

Test for a larger file. We will exclude dask as it is pretty slow.

[16]:

%%timeit
files = ptp.split_trajectory("traj.3.dat")

345 ms ± 9.98 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

[17]:

%%timeit
d = read("traj.3.dat", index=":", format="lammps-dump-text")

5.3 s ± 59.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

[19]:

traj = Trajectory("traj.3.dat")
sl = traj[:]

[22]:

%%timeit
sl.to_file("dump")

374 ms ± 2.67 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

[23]:

times = [345, 5300, 374]
names = ["traj_process", "ase", "Trajectory"]
plt.bar(range(len(times)), times, log=True, tick_label=names)
plt.ylabel("Time (ms)")

[23]:

Text(0, 0.5, 'Time (ms)')

[image: ../_images/examples_prototype_files_25_1.png]

Trajectory performs quite well even for the larger file. Main advantage - it does not write until absolutely necessary!

 API reference

API reference

for pyscal API reference, see here [https://docs.pyscal.org].

_static/pyscal_logo2.png
X" pyscal

_images/examples_02_finding_neighbors_23_1.png
density.

Cutoff method

120

100

] 1
coordination number

_images/examples_03_01_Steinhardts_parameters_for_lammps_12_1.png
06

0s

04

03

02

0 W00 2000 3000 4000 5000

_images/examples_03_01_Steinhardts_parameters_for_lammps_27_1.png
El

5 o8g e e
1338012 Ul swoge Jo saquiny

Cluster ID

_images/examples_02_finding_neighbors_29_1.png
density.

100

Cutoff adaptive method

B 1
coordination number

_images/examples_02_finding_neighbors_37_1.png
density.

5 &8 8 8

10

120

100

Voronoi method

1 1
Coordination number

15

_images/examples_03_01_Steinhardts_parameters_for_lammps_32_1.png
R ® 8 A N R 3

‘Ssan13 3nbiun Jo aquinu

Time slice

_images/examples_03_01_Steinhardts_parameters_for_lammps_34_1.png
25

54 8 3
215 sasnpa 36w

Time slice

_images/examples_03_01_Steinhardts_parameters_for_lammps_46_1.png
25

54 8 3
215 sasnpa 36w

Time slice

nav.xhtml

 Table of Contents

 		
 pyscal- A python module for structural analysis of atomic environments

 		
 Download and Install

 		
 Downloads

 		
 Source code

 		
 Documentation

 		
 Publication

 		
 Getting started

 		
 Trying pyscal

 		
 Installation

 		
 News and updates

 		
 Methods and examples

 		
 Methods

 		
 Methods to calculate neighbors of a particle

 		
 Steinhardt’s parameters

 		
 Classification of atoms as solid or liquid

 		
 Disorder parameter

 		
 Angular parameters

 		
 Voronoi tessellation to identify local structures

 		
 Centrosymmetry parameter

 		
 Entropy - Enthalpy parameters

 		
 Examples

 		
 Getting started with pyscal

 		
 Calculating coordination numbers

 		
 Calculating bond orientational order parameters

 		
 Analyzing a lammps trajectory

 		
 Disorder variable

 		
 Distinction of solid liquid atoms and clustering

 		
 Voronoi parameters

 		
 Angular parameter

 		
 \chi parameters

 		
 Centrosymmetry parameter

 		
 Cowley short range order parameter

 		
 Entropy parameters

 		
 Calculating energy

 		
 Entropy and enthalpy parameters

 		
 Visualizing System objects

 		
 pyscal Trajectory

 		
 pyscal reference

 		
 pyscal Reference

 		
 pyscal.core module

 		
 pyscal.crystal_structures module

 		
 pyscal.trajectory module

 		
 pyscal.traj_process module

 		
 pyscal.misc module

 		
 Publications and Projects

 		
 Publications using pyscal

 		
 Projects using pyscal

 		
 Support, contributing and extending

 		
 Reporting and fixing bugs

 		
 New features

 		
 Setting up local environment

 		
 Help and support

 		
 Citing the code

 		
 Acknowledgements

 		
 Developer

 		
 Contributers

 		
 Acknowledgements

 		
 License

 		
 pyscal License

 		
 Voro++ license

 		
 pybind 11 license

 		
 sphinx theme license

_images/examples_03_steinhardt_parameters_35_1.png
G

0575

0550

0525

0500

0475

0450

0425

0400

0050 0075 0100 0125 0150 0175 0200 0225

qa

_images/examples_03_steinhardt_parameters_40_1.png
056
052 P
B2
& o5
048 . fec
- « hep
“ « bee

004 005 008 010 012 014 o0ls 018

Qs

_images/examples_03_steinhardt_parameters_14_1.png
0

500

a0

00

20

100

bee fee hep

150
1500

1500
%o 1250
1000 1000
50 0
500 500
x50 x50
o o

) 5

dstance

_images/examples_03_steinhardt_parameters_22_1.png
s

036

054

0s2

050

. ® bcc
o fcc

e he

. P

004 005 008 010 012 014 015 018

Qs

_images/examples_08_chi_params_15_1.png
]

‘saibue jo jaquiny

_images/examples_10_short_range_order_9_1.png
aln

a0

00

20

100

H
distance A

_images/examples_03_steinhardt_parameters_47_1.png
054

052 o .
© 050
< .
o4

) - fec
04 . hep

04a

006 o0lo o012 o0l4 o015 ols 020 o022

Qs

_images/examples_06_voronoi_tessellation_14_1.png
-
-t
-

4 5 ® © v & o
s238} Jo ssquiny

_images/examples_11_entropy_parameter_14_1.png
2 RR AR A g °

S4 33 32 31 30 29

En

;,

_images/examples_12_calculating_energy_22_1.png
ER

ER

=

4

Energy

_images/examples_13_combining_energy_enthalpy_17_1.png
e
nep
bec

10
s

fdonuz

25

En

S0 25 00 25 50 75 1o
Energy

s

_images/examples_prototype_files_25_1.png
traj_