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pyscal is a python module for the calculation of local atomic structural environments including Steinhardt’s bond
orientational order parameters1 during post-processing of atomistic simulation data. The core functionality of pyscal
is written in C++ with python wrappers using pybind11 which allows for fast calculations and easy extensions in
python.

Steinhardt’s order parameters are widely used for the identification of crystal structures3. They are also used to distin-
guish if an atom is in a solid or liquid environment4. pyscal is inspired by the BondOrderAnalysis code, but has since
incorporated many additional features and modifications. The pyscal module includes the following functionalities:

1 Steinhardt, P. J., Nelson, D. R., & Ronchetti, M. (1983). Physical Review B, 28.
3 Mickel, W., Kapfer, S. C., Schröder-Turk, G. E., & Mecke, K. (2013). The Journal of Chemical Physics, 138.
4 Auer, S., & Frenkel, D. (2005). Advances in Polymer Science, 173.
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CHAPTER 1

Highlights

• calculation of Steinhardt’s order parameters and their averaged version2.

• links with the Voro++ code, for the calculation of Steinhardt parameters weighted using the face areas of Voronoi
polyhedra3.

• classification of atoms as solid or liquid4.

• clustering of particles based on a user defined property.

• methods for calculating radial distribution functions, Voronoi volumes of particles, number of vertices and face
area of Voronoi polyhedra, and coordination numbers.

• calculation of angular parameters to identify diamond structure5.

2 Lechner, W., & Dellago, C. (2008). The Journal of Chemical Physics, 129.
5 Uttormark, M. J., Thompson, M. O., Clancy, P. (1993). Physical Review B, 47.

3

http://math.lbl.gov/voro++/
https://aip.scitation.org/doi/full/10.1063/1.2977970
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.15717
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CHAPTER 2

Getting started

2.1 Installation

2.1.1 Trying pyscal

You can try some examples provided with pyscal using Binder without installing the package. Please use this link to
try the package.

2.1.2 Supported operating systems

pyscal can be installed on both Linux and Mac OS based systems. For Windows systems, we recommend using Bash
on Windows. Please check this tutorial on how to set up Bash on Windows.

2.1.3 Installation using conda

pyscal can be installed directly using Conda from the conda-forge channel by the following statement-

conda install -c conda-forge pyscal

This is the recommended way to install if you have an Anaconda distribution.

The above command installs the latest release version of pyscal.

pyscal is no longer maintained for Python 2.

2.1.4 Quick installation

pyscal can be installed using the following steps-

• Download an archive of the pyscal library from here.

• Extract the downloaded version. From the extracted folder, run, python setup.py install --user

5
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Tip: Pyscal can be installed system-wide using python setup.py install.

2.1.5 Installation from the repository

pyscal can be built from the repository by-

git clone https://github.com/srmnitc/pyscal.git
cd pyscal
python setup.py install --user

2.1.6 Using a conda environment

pyscal can also be installed in a conda environment, making it easier to manage dependencies. A python3 Conda
environment can be created by,

conda create -n myenv python=3

Once created, the environment can be activated using,

conda activate myenv

In case Cmake and C++11 are not available, these can be installed using,

(myenv) conda install -c anaconda gcc
(myenv) conda install -c anaconda cmake

Now the pyscal repository can be cloned and the module can be installed. Python dependencies are installed automat-
ically.

(myenv) git clone https://github.com/srmnitc/pyscal.git
(myenv) cd pyscal
(myenv) python setup.py install

Tip: A good guide on managing Conda environments is available here.

2.1.7 Dependencies

Dependencies for the C++ part

• Cmake

• C++ 11

Dependencies for the python part

• numpy

Optional dependencies

• pytest

• matplotlib

6 Chapter 2. Getting started
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2.1.8 Tests

In order to see if the installation worked, the following commands can be tried-

import pyscal.core as pc
pc.test()

The above code does some minimal tests and gives a value of True if pyscal was installed successfully. However,
pyscal also contains automated tests which use the pytest python library, which can be installed by pip install
pytest. The tests can be run by executing the command pytest tests/ from the main code directory.

It is good idea to run the tests to check if everything is installed properly.

2.1. Installation 7
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CHAPTER 3

Download

3.1 Downloads

The source code is available in latest stable or release versions. We recommend using the latest stable version for all
updated features.

3.1.1 Source code

• latest stable version of pyscal (tar.gz)

• release version (zip)

3.1.2 Documentation

• PDF version

• Epub version

3.1.3 Publication

• Publication

• citation
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CHAPTER 4

Examples

4.1 Examples

Different examples illustrating the functionality of this module is provided in this section. Interactive versions of these
examples can be launched here.

Examples are designed to run on jupyter notebooks. A good tutorial on jupyter notebooks can be found here. All files
used in the examples can be found in examples/ folder of the main repository. A copy of the repository can be
downloaded from here.

4.1.1 Using pyscal

Getting started with pyscal

This example illustrates basic functionality of pyscal python library by setting up a system and the atoms.

import pyscal.core as pc
import numpy as np

The System class

System is the basic class of pyscal and is required to be setup in

order to perform any calculations. It can be set up as-

sys = pc.System()

sys is a System object. But at this point, it is completely empty. We have to provide the system with the following
information-

• the simulation box dimensions

11
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https://github.com/srmnitc/pyscal
https://pyscal.readthedocs.io/en/latest/download.html


pyscal Documentation, Release 2.7.0

• the positions of individual atoms.

Let us try to set up a small system, which is the bcc unitcell of lattice constant 1. The simulation box dimensions of
such a unit cell would be [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]] where the first set correspond to the x axis, second to y axis
and so on. The unitcell has 2 atoms and their positions are [0,0,0] and [0.5, 0.5, 0.5].

sys.box = [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

We can easily check if everything worked by getting the box dimensions

sys.box

[[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

The Atom class

The next part is assigning the atoms. This can be done using the Atom class. Here, we will only look at the basic
properties of Atom class. For a more detailed description, check the documentation. Now let us create two atoms.

atom1 = pc.Atom()
atom2 = pc.Atom()

Now two empty atom objects are created. The basic poperties of an atom are its positions and id. There are various
other properties which can be set here. A detailed description can be found here.

atom1.pos = [0., 0., 0.]
atom1.id = 0
atom2.pos = [0.5, 0.5, 0.5]
atom2.id = 1

Alternatively, atom objects can also be set up as

atom1 = pc.Atom(pos=[0., 0., 0.], id=0)
atom2 = pc.Atom(pos=[0.5, 0.5, 0.5], id=1)

We can check the details of the atom by querying it

atom1.pos

[0.0, 0.0, 0.0]

Combining System and Atom

Now that we have created the atoms, we can assign them to the system. We can also assign the same box we created
before.

sys = pc.System()
sys.atoms = [atom1, atom2]
sys.box = [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

That sets up the system completely. It has both of it’s constituents - atoms and the simulation box. We can check if
everything works correctly.

12 Chapter 4. Examples
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sys.atoms

[<pyscal.catom.Atom at 0x7fb343025830>, <pyscal.catom.Atom at 0x7fb343025b30>]

This returns all the atoms of the system. Alternatively a single atom can be accessed by,

atom = sys.get_atom(1)

The above call will fetch the atom at position 1 in the list of all atoms in the system.

Once you have all the atoms, you can modify any one and add it back to the list of all atoms in the system. The
following statement will set the type of the first atom to 2.

atom = sys.atoms[0]
atom.type = 2

Lets verify if it was done properly

atom.type

2

Now we can push the atom back to the system with the new type

sys.set_atom(atom)

Warning: Due to Atom being a completely C++ class, it is necessary to use get_atom() and set_atom()
to access individual atoms and set them back into the system object after modification. A list of all atoms however
can be accessed directly by atoms

Reading in an input file

We are all set! The System is ready for calculations. However, in most realistic simulation situations, we have many
atoms and it can be difficult to set each of them individually. In this situation we can read in input file directly. An
example input file containing 500 atoms in a simulation box can be read in automatically. The file we use for this
example is a file of the lammps-dump format. pyscal can also read in POSCAR files. In principle, pyscal only needs
the atom positions and simulation box size, so you can write a python function to process the input file, extract the
details and pass to pyscal.

sys = pc.System()
sys.read_inputfile('conf.dump')

Once again, lets check if the box dimensions are read in correctly

sys.box

[[-7.66608, 11.1901], [-7.66915, 11.1931], [-7.74357, 11.2676]]

Now we can get all atoms that belong to this system

len(sys.atoms)

4.1. Examples 13
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500

We can see that all the atoms are read in correctly and there are 500 atoms in total. Once again, individual atom
properties can be accessed as before.

sys.atoms[0].pos

[-5.66782, -6.06781, -6.58151]

Thats it! Now we are ready for some calculations. You can find more in the examples section of the documentation.

4.1.2 Finding nearest neighbors

Find neighbors of an atom and calculating coordination numbers

In this example, we will read in a configuration from an MD simulation and then calculate the coordination number
distribution. This example assumes that you read the basic example.

import pyscal.core as pc
import numpy as np
import matplotlib.pyplot as plt

Read in a file

The first step is setting up a system. We can create atoms and simulation box using the crystal_structures
module. Let us start by importing the module.

import pyscal.crystal_structures as pcs

atoms, box = pcs.make_crystal('bcc', lattice_constant= 4.00, repetitions=[6,6,6])

The above function creates an bcc crystal of 6x6x6 unit cells with a lattice constant of 4.00 along with a simulation
box that encloses the particles. We can then create a System and assign the atoms and box to it.

sys = pc.System()
sys.atoms = atoms
sys.box = box

Calculating neighbors

We start by calculating the neighbors of each atom in the system. There are two ways to do this, using a cutoff
method and using a voronoi polyhedra method. We will try with both of them. First we try with cutoff system -
which has three sub options. We will check each of them in detail.

Cutoff method

Cutoff method takes cutoff distance value and finds all atoms within the cutoff distance of the host atom.

sys.find_neighbors(method='cutoff', cutoff=4.1)

14 Chapter 4. Examples
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Now lets get all the atoms.

atoms = sys.atoms

let us try accessing the coordination number of an atom

atoms[0].coordination

14

As we would expect for a bcc type lattice, we see that the atom has 14 neighbors (8 in the first shell and 6 in the
second). Lets try a more interesting example by reading in a bcc system with thermal vibrations. Thermal vibrations
lead to distortion in atomic positions, and hence there will be a distribution of coordination numbers.

sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=3.6)
atoms = sys.atoms

We can loop over all atoms and create a histogram of the results

coord = [atom.coordination for atom in atoms]

Now lets plot and see the results

nos, counts = np.unique(coord, return_counts=True)
plt.bar(nos, counts, color="#AD1457")
plt.ylabel("density")
plt.xlabel("coordination number")
plt.title("Cutoff method")

4.1. Examples 15
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Adaptive cutoff methods

pyscal also has adaptive cutoff methods implemented. These methods remove the restriction on having a global cutoff.
A distinct cutoff is selected for each atom during runtime. pyscal uses two distinct algorithms to do this - sann and
adaptive. Please check the documentation for a explanation of these algorithms. For the purpose of this example,
we will use the adaptive algorithm.

adaptive algorithm

sys.find_neighbors(method='cutoff', cutoff='adaptive', padding=1.5)
atoms = sys.atoms
coord = [atom.coordination for atom in atoms]

Now let us plot

nos, counts = np.unique(coord, return_counts=True)
plt.bar(nos, counts, color="#AD1457")
plt.ylabel("density")
plt.xlabel("coordination number")
plt.title("Cutoff adaptive method")

The adaptive method also gives similar results!

Voronoi method

Voronoi method calculates the voronoi polyhedra of all atoms. Any atom that shares a voronoi face area with the host
atom are considered neighbors. Voronoi polyhedra is calculated using the Voro++ code. However, you do not need to
install this specifically as it is linked to pyscal.

16 Chapter 4. Examples
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sys.find_neighbors(method='voronoi')

Once again, let us get all atoms and find their coordination

atoms = sys.atoms
coord = [atom.coordination for atom in atoms]

And visualise the results

nos, counts = np.unique(coord, return_counts=True)
plt.bar(nos, counts, color="#AD1457")
plt.ylabel("density")
plt.xlabel("coordination number")
plt.title("Voronoi method")

Finally..

All methods find the coordination number, and the results are comparable. Cutoff method is very sensitive to the
choice of cutoff radius, but Voronoi method can slightly overestimate the neighbors due to thermal vibrations.

4.1.3 Steinhardt parameters

Calculating bond orientational order parameters

This example illustrates the calculation of bond orientational order parameters. Bond order parameters, 𝑞𝑙 and their
averaged versions, 𝑞𝑙 are widely used to identify atoms belong to different crystal structures. In this example, we will
consider MD snapshots for bcc, fcc, hcp and liquid, and calculate the 𝑞4 and 𝑞6 parameters and their averaged versions
which are widely used in literature. More details can be found here.

4.1. Examples 17
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import pyscal.core as pc
import pyscal.crystal_structures as pcs
import numpy as np
import matplotlib.pyplot as plt

In this example, we analyse MD configurations, first a set of perfect bcc, fcc and hcp structures and another set with
thermal vibrations.

Perfect structures

To create atoms and box for perfect structures, the :mod:~pyscal.crystal_structures module is used. The
created atoms and boxes are then assigned to System objects.

bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=3.147, repetitions=[4,4,
→˓4])
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=3.147, repetitions=[4,4,
→˓4])
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=3.147, repetitions=[4,4,
→˓4])
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

Next step is calculation of nearest neighbors. There are two ways to calculate neighbors, by using a cutoff distance
or by using the voronoi cells. In this example, we will use the cutoff method and provide a cutoff distance for each
structure.

Finding the cutoff distance

The cutoff distance is normally calculated in a such a way that the atoms within the first shell is incorporated in this
distance. The :func:pyscal.core.System.calculate_rdf function can be used to find this cutoff distance.

bccrdf = bcc.calculate_rdf()
fccrdf = fcc.calculate_rdf()
hcprdf = hcp.calculate_rdf()

Now the calculated rdf is plotted

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(11,4))
ax1.plot(bccrdf[1], bccrdf[0])
ax2.plot(fccrdf[1], fccrdf[0])
ax3.plot(hcprdf[1], hcprdf[0])
ax1.set_xlim(0,5)
ax2.set_xlim(0,5)
ax3.set_xlim(0,5)

(continues on next page)
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(continued from previous page)

ax1.set_title('bcc')
ax2.set_title('fcc')
ax3.set_title('hcp')
ax2.set_xlabel("distance")
ax1.axvline(3.6, color='red')
ax2.axvline(2.7, color='red')
ax3.axvline(3.6, color='red')

The selected cutoff distances are marked in red in the above plot. For bcc, since the first two shells are close to each
other, for this example, we will take the cutoff in such a way that both shells are included.

Steinhardt’s parameters - cutoff neighbor method

bcc.find_neighbors(method='cutoff', cutoff=3.6)
fcc.find_neighbors(method='cutoff', cutoff=2.7)
hcp.find_neighbors(method='cutoff', cutoff=3.6)

We have used a cutoff of 3 here, but this is a parameter that has to be tuned. Using a different cutoff for each structure
is possible, but it would complicate the method if the system has a mix of structures. Now we can calculate the 𝑞4 and
𝑞6 distributions

bcc.calculate_q([4,6])
fcc.calculate_q([4,6])
hcp.calculate_q([4,6])

Thats it! Now lets gather the results and plot them.

bccq = bcc.get_qvals([4, 6])
fccq = fcc.get_qvals([4, 6])
hcpq = hcp.get_qvals([4, 6])

plt.scatter(bccq[0], bccq[1], s=60, label='bcc', color='#C62828')
plt.scatter(fccq[0], fccq[1], s=60, label='fcc', color='#FFB300')
plt.scatter(hcpq[0], hcpq[1], s=60, label='hcp', color='#388E3C')
plt.xlabel("$q_4$", fontsize=20)

(continues on next page)
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(continued from previous page)

plt.ylabel("$q_6$", fontsize=20)
plt.legend(loc=4, fontsize=15)

Firstly, we can see that Steinhardt parameter values of all the atoms fall on one specific point which is due to the
absence of thermal vibrations. Next, all the points are well separated and show good distinction. However, at finite
temperatures, the atomic positions are affected by thermal vibrations and hence show a spread in the distribution. We
will show the effect of thermal vibrations in the next example.

Structures with thermal vibrations

Once again, we create the reqd structures using the :mod:~pyscal.crystal_structures module. Noise can
be applied to atomic positions using the noise keyword as shown below.

bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=3.147, repetitions=[10,
→˓10,10], noise=0.1)
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=3.147, repetitions=[10,
→˓10,10], noise=0.1)
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=3.147, repetitions=[10,
→˓10,10], noise=0.1)
hcp = pc.System()

(continues on next page)

20 Chapter 4. Examples



pyscal Documentation, Release 2.7.0

(continued from previous page)

hcp.atoms = hcp_atoms
hcp.box = hcp_box

cutoff method

bcc.find_neighbors(method='cutoff', cutoff=3.6)
fcc.find_neighbors(method='cutoff', cutoff=2.7)
hcp.find_neighbors(method='cutoff', cutoff=3.6)

And now, calculate 𝑞4, 𝑞6 parameters

bcc.calculate_q([4,6])
fcc.calculate_q([4,6])
hcp.calculate_q([4,6])

Gather the q vales and plot them

bccq = bcc.get_qvals([4, 6])
fccq = fcc.get_qvals([4, 6])
hcpq = hcp.get_qvals([4, 6])

plt.scatter(fccq[0], fccq[1], s=10, label='fcc', color='#FFB300')
plt.scatter(hcpq[0], hcpq[1], s=10, label='hcp', color='#388E3C')
plt.scatter(bccq[0], bccq[1], s=10, label='bcc', color='#C62828')
plt.xlabel("$q_4$", fontsize=20)
plt.ylabel("$q_6$", fontsize=20)
plt.legend(loc=4, fontsize=15)

The thermal vibrations cause the distributions to spread, but it still very good. Lechner and Dellago proposed using
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the averaged distributions, 𝑞4 − 𝑞6 to better distinguish the distributions. Lets try that.

bcc.calculate_q([4,6], averaged=True)
fcc.calculate_q([4,6], averaged=True)
hcp.calculate_q([4,6], averaged=True)

bccaq = bcc.get_qvals([4, 6], averaged=True)
fccaq = fcc.get_qvals([4, 6], averaged=True)
hcpaq = hcp.get_qvals([4, 6], averaged=True)

Lets see if these distributions are better..

plt.scatter(fccaq[0], fccaq[1], s=10, label='fcc', color='#FFB300')
plt.scatter(hcpaq[0], hcpaq[1], s=10, label='hcp', color='#388E3C')
plt.scatter(bccaq[0], bccaq[1], s=10, label='bcc', color='#C62828')
plt.xlabel("$q_4$", fontsize=20)
plt.ylabel("$q_6$", fontsize=20)
plt.legend(loc=4, fontsize=15)

This looks much better! We can see that the resolution is much better than the non averaged versions.

There is also the possibility to calculate structures using Voronoi based neighbor identification too. Let’s try that now.

bcc.find_neighbors(method='voronoi')
fcc.find_neighbors(method='voronoi')
hcp.find_neighbors(method='voronoi')

bcc.calculate_q([4,6], averaged=True)
fcc.calculate_q([4,6], averaged=True)
hcp.calculate_q([4,6], averaged=True)
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bccaq = bcc.get_qvals([4, 6], averaged=True)
fccaq = fcc.get_qvals([4, 6], averaged=True)
hcpaq = hcp.get_qvals([4, 6], averaged=True)

Plot the calculated points..

plt.scatter(fccaq[0], fccaq[1], s=10, label='fcc', color='#FFB300')
plt.scatter(hcpaq[0], hcpaq[1], s=10, label='hcp', color='#388E3C')
plt.scatter(bccaq[0], bccaq[1], s=10, label='bcc', color='#C62828')
plt.xlabel("$q_4$", fontsize=20)
plt.ylabel("$q_6$", fontsize=20)
plt.legend(loc=4, fontsize=15)

Voronoi based method also provides good resolution,the major difference being that the location of bcc distribution is
different.

Disorder variable

In this example, disorder variable which was introduced to measure the disorder of a system is explored. We start by
importing the necessary modules. We will use crystal_structures to create the necessary crystal structures.

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt
import numpy as np

First an fcc structure with a lattice constant of 4.00 is created.

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4])

The created atoms and box are assigned to a System object.
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fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

The next step is find the neighbors, and the calculate the Steinhardt parameter based on which we could calculate the
disorder variable.

fcc.find_neighbors(method='cutoff', cutoff='adaptive')

Once the neighbors are found, we can calculate the Steinhardt parameter value. In this example 𝑞 = 6 will be used.

fcc.calculate_q(6)

Finally, disorder parameter can be calculated.

fcc.calculate_disorder()

The calculated disorder value can be accessed for each atom using the disorder variable.

atoms = fcc.atoms

disorder = [atom.disorder for atom in atoms]

np.mean(disorder)

-1.041556887034408e-16

As expected, for a perfect fcc structure, we can see that the disorder is zero. The variation of disorder variable on a
distorted lattice can be explored now. We will once again use the noise keyword along with make_crystal() to
create a distorted lattice.

fcc_atoms_d1, fcc_box_d1 = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,
→˓4,4], noise=0.01)
fcc_d1 = pc.System()
fcc_d1.atoms = fcc_atoms_d1
fcc_d1.box = fcc_box_d1

Once again, find neighbors and then calculate disorder

fcc_d1.find_neighbors(method='cutoff', cutoff='adaptive')
fcc_d1.calculate_q(6)
fcc_d1.calculate_disorder()

Check the value of disorder

atoms_d1 = fcc_d1.atoms

disorder = [atom.disorder for atom in atoms_d1]

np.mean(disorder)

0.013889967380485688

The value of average disorder for the system has increased with noise. Finally trying with a high amount of noise.
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fcc_atoms_d2, fcc_box_d2 = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,
→˓4,4], noise=0.1)
fcc_d2 = pc.System()
fcc_d2.atoms = fcc_atoms_d2
fcc_d2.box = fcc_box_d2

fcc_d2.find_neighbors(method='cutoff', cutoff='adaptive')
fcc_d2.calculate_q(6)
fcc_d2.calculate_disorder()

atoms_d2 = fcc_d2.atoms

disorder = [atom.disorder for atom in atoms_d2]
np.mean(disorder)

1.8469165876016702

The value of disorder parameter shows an increase with the amount of lattice distortion. An averaged version of
disorder parameter, averaged over the neighbors for each atom can also be calculated as shown below.

fcc_d2.calculate_disorder(averaged=True)

atoms_d2 = fcc_d2.atoms
disorder = [atom.avg_disorder for atom in atoms_d2]
np.mean(disorder)

1.850630088115515

The disorder parameter can also be calculated for values of Steinhardt parameter other than 6. For example,

fcc_d2.find_neighbors(method='cutoff', cutoff='adaptive')
fcc_d2.calculate_q([4, 6])
fcc_d2.calculate_disorder(q=4, averaged=True)

atoms_d2 = fcc_d2.atoms
disorder = [atom.disorder for atom in atoms_d2]
np.mean(disorder)

1.880741277448693

𝑞 = 4, for example, can be useful when measuring disorder in bcc crystals

Distinction of solid liquid atoms and clustering

In this example, we will take one configuration from a molecular dynamics simulation which has a solid cluster in
liquid. The task is to identify solid atoms and cluster them. More details about the method can be found here.

The first step is, of course, importing all the necessary module. For visualisation, we will use Ovito.

The above image shows a visualization of the system using Ovito. Importing modules,

import pyscal.core as pc
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Now we will set up a System with this input file, and calculate neighbors. Here we will use a cutoff method to find
neighbors. More details about finding neighbors can be found here.

sys = pc.System()
sys.read_inputfile('cluster.dump')
sys.find_neighbors(method='cutoff', cutoff=3.63)

Once we compute the neighbors, the next step is to find solid atoms. This can be done using find_solids()
method.

sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=False)

The above statement found all the solid atoms. Solid atoms can be identified by the value of the solid attribute. For
that we first get the atom objects and select those with solid value as True.

atoms = sys.atoms
solids = [atom for atom in atoms if atom.solid]
len(solids)

202

There are 202 solid atoms in the system. In order to visualise in Ovito, we need to first write it out to a trajectory file.
This can be done with the help of to_file() method of System. This method can help to save any attribute of the
atom or any Steinhardt parameter value.

sys.to_file('sys.solid.dat', custom = ['solid'])

We can now visualize this file in Ovito. After opening the file in Ovito, the modifier compute property can be selected.
The Output property should be selection and in the expression field, solid==0 can be selected to select
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all the non solid atoms. Applying a modifier delete selected particles can be applied to delete all the non solid particles.
The system after removing all the liquid atoms is shown below.

Clustering algorithm

You can see that there is a cluster of atom. The clustering functions that pyscal offers helps to select atoms that belong
to this cluster. If you used find_clusters() with cluster=True, the clustering is carried out. Since we did
used cluster=False above, we will rerun the function

sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=True)

176

You can see that the above function call returned the number of atoms belonging to the largest cluster as an output. In
order to extract atoms that belong to the largest cluster, we can use the largest_cluster attribute of the atom.

atoms = sys.atoms
largest_cluster = [atom for atom in atoms if atom.largest_cluster]
len(largest_cluster)

176

The value matches that given by the function. Once again we will save this information to a file and visualize it in
Ovito.

sys.to_file('sys.cluster.dat', custom = ['solid', 'largest_cluster'])

The system visualized in Ovito following similar steps as above is shown below.
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It is clear from the image that the largest cluster of solid atoms was successfully identified. Clustering can be done
over any property. The following example with the same system will illustrate this.

Clustering based on a custom property

In pyscal, clustering can be done based on any property. The following example illustrates this. To find the clusters
based on a custom property, the cluster_atoms() method has to be used. The simulation box shown above has
the centre roughly at (25, 25, 25). For the custom clustering, we will cluster all atoms within a distance of 10 from the
the rough centre of the box at (25, 25, 25). Let us define a function that checks the above condition.

def check_distance(atom):
#get position of atom
pos = atom.pos
#calculate distance from (25, 25, 25)
dist = ((pos[0]-25)**2 + (pos[1]-25)**2 + (pos[2]-25)**2)**0.5
#check if dist < 10
return (dist <= 10)

The above function would return True or False depending on a condition and takes the Atom as an argument. These
are the two important conditions to be satisfied. Now we can pass this function to cluster. First, set up the system and
find the neighbors.

sys = pc.System()
sys.read_inputfile('cluster.dump')
sys.find_neighbors(method='cutoff', cutoff=3.63)

Now cluster

28 Chapter 4. Examples



pyscal Documentation, Release 2.7.0

sys.cluster_atoms(check_distance)

242

There are 242 atoms in the cluster! Once again we can check this, save to a file and visualize in ovito.

atoms = sys.atoms
largest_cluster = [atom for atom in atoms if atom.largest_cluster]
len(largest_cluster)

242

sys.to_file('sys.dist.dat', custom = ['solid', 'largest_cluster'])

This example illustrates that any property can be used to cluster the atoms!

4.1.4 Angle based methods

Angular parameter

This illustrates the use of angular parameter to identify diamond structure. Angular parameter was introduced by
Uttormark et al., and measures the tetrahedrality of the local atomic structure. An atom belonging to diamond structure
has four nearest neighbors which gives rise to six three body angles around the atom. The angular parameter 𝐴 is then
defined as,

𝐴 =
∑︀6

𝑖=1(cos(𝜃𝑖) + 1
3 )2
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An atom belonging to diamond structure would show the value of angular params close to 0. The following example
illustrates the use of this parameter.

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import numpy as np
import matplotlib.pyplot as plt

Create structures

The first step is to create some structures using the crystal_structures module and assign it to a System. This
can be done as follows-

atoms, box = pcs.make_crystal('diamond', lattice_constant=4, repetitions=[3,3,3])
sys = pc.System()
sys.atoms = atoms
sys.box = box

Now we can find the neighbors of all atoms. In this case we will use an adaptive method using the
find_neighbors() which can find an individual cutoff for each atom.

sys.find_neighbors(method='cutoff', cutoff='adaptive')

Finally, the angular criteria can be calculated by,

sys.calculate_angularcriteria()

The above function assigns the angular value for each atom in the attribute angular which can be accessed using,

atoms = sys.atoms
angular = [atom.angular for atom in atoms]

The angular values are zero for atoms that belong to diamond structure.

𝜒 parameters

𝜒 parameters introduced by Ackland and Jones measures the angles generated by pairs of neighbor atom around the
host atom, and assigns it to a histogram to calculate a local structure. In this example, we will create different crystal
structures and see how the 𝜒 parameters change with respect to the local coordination.

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt
import numpy as np

The crystal_structures module is used to create different perfect crystal structures. The created atoms and
simulation box is then assigned to a System object. For this example, fcc, bcc, hcp and diamond structures are
created.

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4])
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box
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bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=4, repetitions=[4,4,4])
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box

hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=4, repetitions=[4,4,4])
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

dia_atoms, dia_box = pcs.make_crystal('diamond', lattice_constant=4, repetitions=[4,4,
→˓4])
dia = pc.System()
dia.atoms = dia_atoms
dia.box = dia_box

Before calculating 𝜒 parameters, the neighbors for each atom need to be found.

fcc.find_neighbors(method='cutoff', cutoff='adaptive')
bcc.find_neighbors(method='cutoff', cutoff='adaptive')
hcp.find_neighbors(method='cutoff', cutoff='adaptive')
dia.find_neighbors(method='cutoff', cutoff='adaptive')

Now, 𝜒 parameters can be calculated

fcc.calculate_chiparams()
bcc.calculate_chiparams()
hcp.calculate_chiparams()
dia.calculate_chiparams()

The calculated parameters for each atom can be accessed using the chiparams attribute.

fcc_atoms = fcc.atoms
bcc_atoms = bcc.atoms
hcp_atoms = hcp.atoms
dia_atoms = dia.atoms

fcc_atoms[10].chiparams

[6, 0, 0, 0, 24, 12, 0, 24, 0]

The output is an array of length 9 which shows the number of neighbor angles found within specific bins as explained
here. The output for one atom from each structure is shown below.

plt.bar(np.array(range(9))-0.3, fcc_atoms[10].chiparams, width=0.2, label="fcc")
plt.bar(np.array(range(9))-0.1, bcc_atoms[10].chiparams, width=0.2, label="bcc")
plt.bar(np.array(range(9))+0.1, hcp_atoms[10].chiparams, width=0.2, label="hcp")
plt.bar(np.array(range(9))+0.3, dia_atoms[10].chiparams, width=0.2, label="diamond")
plt.xlabel("$\chi$")
plt.ylabel("Number of angles")
plt.legend()

4.1. Examples 31

http://pyscal.com/en/latest/methods/nearestneighbormethods/nearestneighbormethods.html
http://pyscal.com/en/latest/methods/angularmethods/chiparams.html


pyscal Documentation, Release 2.7.0

The atoms exhibit a distinct fingerprint for each structure. Structural identification can be made up comparing the ratio
of various 𝜒 parameters as described in the original publication.

4.1.5 Voronoi tessellation

Voronoi parameters

Voronoi tessellation can be used to identify local structure by counting the number of faces of the Voronoi polyhedra
of an atom. For each atom a vector ⟨𝑛3 𝑛4 𝑛5 𝑛6 can be calculated where 𝑛3 is the number of Voronoi faces of the
associated Voronoi polyhedron with three vertices, 𝑛4 is with four vertices and so on. Each perfect crystal structure
such as a signature vector, for example, bcc can be identified by ⟨0 6 0 8⟩ and fcc can be identified using ⟨0 12 0 0⟩. It
is also a useful tool for identifying icosahedral structure which has the fingerprint ⟨0 0 12 0⟩.

import pyscal.core as pc
import pyscal.crystal_structures as pcs
import matplotlib.pyplot as plt
import numpy as np

The crystal_structures module is used to create different perfect crystal structures. The created atoms and
simulation box is then assigned to a System object. For this example, fcc, bcc, hcp and diamond structures are
created.

fcc_atoms, fcc_box = pcs.make_crystal('fcc', lattice_constant=4, repetitions=[4,4,4])
fcc = pc.System()
fcc.atoms = fcc_atoms
fcc.box = fcc_box

bcc_atoms, bcc_box = pcs.make_crystal('bcc', lattice_constant=4, repetitions=[4,4,4])
bcc = pc.System()
bcc.atoms = bcc_atoms
bcc.box = bcc_box
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hcp_atoms, hcp_box = pcs.make_crystal('hcp', lattice_constant=4, repetitions=[4,4,4])
hcp = pc.System()
hcp.atoms = hcp_atoms
hcp.box = hcp_box

Before calculating the Voronoi polyhedron, the neighbors for each atom need to be found using Voronoi method.

fcc.find_neighbors(method='voronoi')
bcc.find_neighbors(method='voronoi')
hcp.find_neighbors(method='voronoi')

Now, Voronoi vector can be calculated

fcc.calculate_vorovector()
bcc.calculate_vorovector()
hcp.calculate_vorovector()

The calculated parameters for each atom can be accessed using the vorovector attribute.

fcc_atoms = fcc.atoms
bcc_atoms = bcc.atoms
hcp_atoms = hcp.atoms

fcc_atoms[10].vorovector

[0, 12, 0, 0]

As expected, fcc structure exhibits 12 faces with four vertices each. For a single atom, the difference in the Voronoi
fingerprint is shown below

fig, ax = plt.subplots()
ax.bar(np.array(range(4))-0.2, fcc_atoms[10].vorovector, width=0.2, label="fcc")
ax.bar(np.array(range(4)), bcc_atoms[10].vorovector, width=0.2, label="bcc")
ax.bar(np.array(range(4))+0.2, hcp_atoms[10].vorovector, width=0.2, label="hcp")
ax.set_xticks([1,2,3,4])
ax.set_xlim(0.5, 4.25)
ax.set_xticklabels(['$n_3$', '$n_4$', '$n_5$', '$n_6$'])
ax.set_ylabel("Number of faces")
ax.legend()
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The difference in Voronoi fingerprint for bcc and the closed packed structures is clearly visible. Voronoi tessellation,
however, is incapable of distinction between fcc and hcp structures.

Voronoi volume

Voronoi volume, which is the volume of the Voronoi polyhedron is calculated when the neighbors are found. The
volume can be accessed using the volume attribute.

fcc_atoms = fcc.atoms

fcc_vols = [atom.volume for atom in fcc_atoms]

np.mean(fcc_vols)

16.0

4.1.6 Other examples
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CHAPTER 5

Methods implemented in pyscal

5.1 Methods implemented in pyscal

5.1.1 Methods to calculate neighbors of a particle

pyscal includes different methods to explore the local environment of a particle that rely on the calculation of nearest
neighbors. Various approaches to compute the neighbors of particles are discussed here.

Fixed cutoff method

The most common method to calculate the nearest neighbors of an atom is using a cutoff radius. The neighborhood
of an atom for calculation of Steinhardt’s parameters1 is often carried out using this method. Commonly, a cutoff
is selected as the first minimum of the radial distribution functions. Once a cutoff is selected, the neighbors of an
atom are those that fall within this selected radius. The following code snippet will use the cutoff method to calculate
neighbors. Please check the examples section for basic use of the module. In this example, conf.dump is assumed
to be the input configuration of the system. A cutoff radius of 3 is assumed for calculation of neighbors.

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=3)

Adaptive cutoff methods

A fixed cutoff radius can introduce limitations to explore the local environment of the particle in some cases:

• At finite temperatures, when thermal fluctuations take place, the selection of a fixed cutoff may result in an
inaccurate description of the local environment.

1 Steinhardt, PJ, Nelson, DR, Ronchetti, M. Phys Rev B 28, 1983.
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• If there is more than one structure present in the system, for example, bcc and fcc, the selection of cutoff such
that it includes the first shell of both structures can be difficult.

In order to achieve a more accurate description of the local environment, various adaptive approaches have been
proposed. Two of the methods implemented in the module are discussed below.

Solid angle based nearest neighbor algorithm (SANN)

SANN algorithm1 determines the cutoff radius by counting the solid angles around an atom and equating it to 4𝜋. The
algorithm solves the following equation iteratively.

𝑅
(𝑚)
𝑖 =

∑︀𝑚
𝑗=1 𝑟𝑖,𝑗

𝑚− 2
< 𝑟𝑖,𝑚+1

where 𝑖 is the host atom, 𝑗 are its neighbors with 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗. 𝑅𝑖 is the cutoff radius for
each particle 𝑖 which is found by increasing the neighbor of neighbors 𝑚 iteratively. For a description of the algorithm
and more details, please check the reference2. SANN algorithm can be used to find the neighbors by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='sann')

Since SANN algorithm involves sorting, a sufficiently large cutoff is used in the beginning to reduce the number entries
to be sorted. This parameter is calculated by,

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = threshold ×
(︂

Simulation box volume

Number of particles

)︂ 1
3

a tunable threshold parameter can be set through function arguments.

Adaptive cutoff method

An adaptive cutoff specific for each atom can also be found using an algorithm similar to adaptive common neighbor
analysis2. This adaptive cutoff is calculated by first making a list of all neighbor distances for each atom similar to
SANN method. Once this list is available, then the cutoff is calculated from,

𝑟𝑐𝑢𝑡(𝑖) = padding ×
(︂

1

nlimit

nlimit∑︁
𝑗=1

𝑟𝑖𝑗

)︂

This method can be chosen by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')

The padding and nlimit parameters in the above equation can be tuned using the respective keywords.

Either of the adaptive method can be used to find neighbors, which can then be used to calculate Steinhardt’s parame-
ters or their averaged version.

1 van Meel, JA, Filion, L, Valeriani, C, Frenkel, D, J Chem Phys 234107, 2012.
2 Stukowski, A, Model Simul Mater SC 20, 2012.
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Voronoi tessellation

Voronoi tessellation provides a completely parameter free geometric approach for calculation of neighbors. Voro++
code is used for Voronoi tessellation. Neighbors can be calculated using this method by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')

Finding neighbors using Voronoi tessellation also calculates a weight for each neighbor. The weight of a neighbor 𝑗
towards a host atom 𝑖 is given by,

𝑊𝑖𝑗 =
𝐴𝑖𝑗∑︀𝑁
𝑗=1 𝐴𝑖𝑗

where 𝐴𝑖𝑗 is the area of Voronoi facet between atom 𝑖 and 𝑗, 𝑁 are all the neighbors identified through Voronoi
tessellation. This weight can be used later for calculation of weighted Steinhardt’s parameters. Optionally, it is possible
to choose the exponent for this weight. Option voroexp is used to set this option. For example if voroexp=2, the
weight would be calculated as,

𝑊𝑖𝑗 =
𝐴2

𝑖𝑗∑︀𝑁
𝑗=1 𝐴

2
𝑖𝑗

5.1.2 Steinhardt’s bond orientational order parameters

Steinhardt’s parameters

Steinhardt’s bond orientational order parameters1 are a set of parameters based on spherical harmonics to explore the
local atomic environment. These parameters have been used extensively for various uses such as distinction of crystal
structures, identification of solid and liquid atoms and identification of defects2.

These parameters, which are rotationally and translationally invariant are defined by,

𝑞𝑙(𝑖) =
(︁ 4𝜋

2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

|𝑞𝑙𝑚(𝑖)|2
)︁ 1

2

where,

𝑞𝑙𝑚(𝑖) =
1

𝑁(𝑖)

𝑁(𝑖)∑︁
𝑗=1

𝑌𝑙𝑚(𝑟𝑟𝑟𝑖𝑗)

in which 𝑌𝑙𝑚 are the spherical harmonics and 𝑁(𝑖) is the number of neighbours of particle 𝑖, 𝑟𝑟𝑟𝑖𝑗 is the vector connect-
ing particles 𝑖 and 𝑗, and 𝑙 and 𝑚 are both intergers with 𝑚 ∈ [−𝑙,+𝑙]. Various parameters have found specific uses,
such as 𝑞2 and 𝑞6 for identification of crystallinity, 𝑞6 for identification of solidity, and 𝑞4 and 𝑞6 for distinction of
crystal structures2. Commonly this method uses a cutoff radius to identify the neighbors of an atom. The cutoff can be
chosen based on different methods available. Once the cutoff is chosen and neighbors are calculated, the calculation
of Steinhardt’s parameters is straightforward.

1 Steinhardt, PJ, Nelson, DR, Ronchetti, M. Phys Rev B 28, 1983.
2 Mickel, W, Kapfer, SC, Schroder-Turk, GE, Mecke, K, J Chem Phys 138, 2013.
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sys.calculate_q([4, 6])
q = sys.get_qvals([4, 6])

Note: Associated methods

find_neighbors() calculate_q() get_qvals() get_q() Example

Averaged Steinhardt’s parameters

At high temperatures, thermal vibrations affect the atomic positions. This in turn leads to overlapping distributions
of 𝑞𝑙 parameters, which makes the identification of crystal structures difficult. To address this problem, the averaged
version 𝑞𝑙 of Steinhardt’s parameters was introduced by Lechner and Dellago1. 𝑞𝑙 is given by,

𝑞𝑙(𝑖) =
(︁ 4𝜋

2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

⃒⃒⃒ 1

𝑁̃(𝑖)

𝑁̃(𝑖)∑︁
𝑘=0

𝑞𝑙𝑚(𝑘)
⃒⃒⃒2)︁ 1

2

where the sum from 𝑘 = 0 to 𝑁̃(𝑖) is over all the neighbors and the particle itself. The averaged parameters takes
into account the first neighbor shell and also information from the neighboring atoms and thus reduces the overlap
between the distributions. Commonly 𝑞4 and 𝑞6 are used in identification of crystal structures. Averaged versions can
be calculated by setting the keyword averaged=True as follows.

sys.calculate_q([4, 6], averaged=True)
q = sys.get_qvals([4, 6], averaged=True)

Note: Associated methods

find_neighbors() calculate_q() get_qvals() get_q() Example

Voronoi weighted Steinhardt’s parameters

In order to improve the resolution of crystal structures Mickel et al1 proposed weighting the contribution of each
neighbor to the Steinhardt parameters by the ratio of the area of the Voronoi facet shared between the neighbor and
host atom. The weighted parameters are given by,

𝑞𝑙𝑚(𝑖) =
1

𝑁(𝑖)

𝑁(𝑖)∑︁
𝑗=1

𝐴𝑖𝑗

𝐴
𝑌𝑙𝑚(𝑟𝑟𝑟𝑖𝑗)

where 𝐴𝑖𝑗 is the area of the Voronoi facet between atoms 𝑖 and 𝑗 and 𝐴 is the sum of the face areas of atom 𝑖. In
pyscal, the area weights are already assigned during the neighbor calculation phase when the Voronoi method is used
to calculate neighbors in the find_neighbors(). The Voronoi weighted Steinhardt’s parameters can be calculated
as follows,

sys.find_neighbors(method='voronoi')
sys.calculate_q([4, 6])
q = sys.get_qvals([4, 6])

1 Lechner, W, Dellago, C, J Chem Phys, 2013.
1 Mickel, W, Kapfer, SC, Schroder-Turk, GE, Mecke, K, J Chem Phys 138, 2013.
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The weighted Steinhardt’s parameters can also be averaged as described above. Once again, the keyword
averaged=True can be used for this purpose.

sys.find_neighbors(method='voronoi')
sys.calculate_q([4, 6], averaged=True)
q = sys.get_qvals([4, 6], averaged=True)

It was also proposed that higher powers of the weight2
𝐴𝛼

𝑖𝑗

𝐴(𝛼) where 𝛼 = 2, 3 can also be used, where 𝐴(𝛼) =∑︀𝑁(𝑖)
𝑗=1 𝐴𝛼

𝑖𝑗 The value of this can be set using the keyword voroexp during the neighbor calculation phase.

sys.find_neighbors(method='voronoi', voroexp=2)

If the value of voroexp is set to 0, the neighbors would be found using Voronoi method, but the calculated Stein-
hardt’s parameters will not be weighted.

Note: Associated methods

find_neighbors() calculate_q() get_qvals() get_q()

Disorder parameter

Kawasaki and Onuki1 proposed a disorder variable based on Steinhardt’s order paramaters which can be used to
distinguish between ordered and disordered structures.

The disorder variable for an atom is defined as,

𝐷𝑗 =
1

𝑛𝑗
𝑏

∑︁
𝑘∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

[𝑆𝑗𝑗 + 𝑆𝑘𝑘 − 2𝑆𝑗𝑘]

where S is given by,

𝑆𝑗𝑘 =
∑︁

−𝑙≤𝑚≤𝑙

𝑞𝑗𝑙𝑚(𝑞𝑘𝑙𝑚)*

l = 6 was used in the original publication as it is a good indicator of crystallinity. However, l = 4 can also be used for
treating bcc structures. An averaged disorder parameter for each atom can also be calculated in pyscal,

𝐷̄𝑗 =
1

𝑛𝑗
𝑏

∑︁
𝑘∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝐷𝑗

In pyscal, disorder parameter can be calculated by the following code-block,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=0)
sys.calculate_q(6)
sys.calculate_disorder(averaged=True, q=6)

The value of q can be replaced with whichever is required from 2-12. The calculated values can be accessed by,
disorder and avg_disorder.

Note: Associated methods
2 Haeberle, J, Sperl, M, Born, P Arxiv 2019.
1 Kawasaki .T, Onuki .A, JCP 135, 174109 (2011)
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calculate_q() calculate_disorder() disorder avg_disorder Example

Classification of atoms as solid or liquid

pyscal can also be used to distinguish solid and liquid atoms. The classification is based on Steinhardt’s parameters,
specifically 𝑞6. The method defines two neighboring atoms 𝑖 and 𝑗 as having solid bonds if a parameter 𝑠𝑖𝑗1,

𝑠𝑖𝑗 =

6∑︁
𝑚=−6

𝑞6𝑚(𝑖)𝑞*6𝑚(𝑗) ≥ threshold

Additionally, a second order parameter is used to improve the distinction in solid-liquid boundaries2. This is defined
by the criteria,

⟨𝑠𝑖𝑗⟩ > avgthreshold

If a particle has 𝑛 number of bonds with 𝑠𝑖𝑗 ≥ threshold and the above condition is also satisfied, it is considered as
a solid. The solid atoms can be clustered to find the largest solid cluster of atoms. Please check the examples on how
to do this.

Finding solid atoms in liquid start with reading in a file and calculation of neighbors.

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff=4)

Once again, there are various methods for finding neighbors. Please check here for details on neighbor calculation
methods. Once the neighbors are calculated, solid atoms can be found directly by,

sys.find_solids(bonds=6, threshold=0.5, avgthreshold=0.6, cluster=True)

bonds set the number of minimum bonds a particle should have (as defined above), threshold and
avgthreshold are the same quantities that appear in the equations above. Setting the keyword cluster to True
returns the size of the largest solid cluster. It is also possible to check if each atom is solid or not.

atoms = sys.atom
solids = [atom.solid for atom in atoms]

Note: Associated methods

find_neighbors() calculate_q() find_solids() solid() Example

5.1.3 Angle based methods

Angular criteria for identification of diamond structure

Angular parameter introduced by Uttormark et al1 is used to measure the tetrahedrality of local atomic structure. An
atom belonging to diamond structure has four nearest neighbors which gives rise to six three body angles around the
atom. The angular parameter 𝐴 is then defined as,

1 Auer, S, Frenkel, D. Adv Polym Sci 173, 2005
2 Bokeloh, J, Rozas, RE, Horbach, J, Wilde, G, Phys. Rev. Lett. 107, 2011
1 Uttormark, MJ, Thompson, MO, Clancy, P, Phys. Rev. B 47, 1993
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𝐴 =
∑︀6

𝑖=1(cos(𝜃𝑖) + 1
3 )2

An atom belonging to diamond structure would show the value of angular params close to 0. Angular parameter can
be calculated in pyscal using the following method -

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')
sys.calculate_angularcriteria()

The calculated angular criteria value can be accessed for each atom using angular.

Note: Associated methods

calculate_angularcriteria() angular Example

𝜒 parameters for structural identification

𝜒 parameters introduced by Ackland and Jones1 measures all local angles created by an atom with its neighbors and
creates a histogram of these angles to produce vector which can be used to identify structures. After finding the
neighbors of an atom, cos 𝜃𝑖𝑗𝑘 for atoms j and k which are neighbors of i is calculated for all combinations of i, j
and k. The set of all calculated cosine values are then added to a histogram with the following bins - [-1.0, -0.945,
-0.915, -0.755, -0.705, -0.195, 0.195, 0.245, 0.795, 1.0]. Compared to 𝜒 parameters from 𝜒0 to 𝜒7 in the associated
publication, the vector calculated in pyscal contains values from 𝜒0 to 𝜒8 which is due to an additional 𝜒 parameter
which measures the number of neighbors between cosines -0.705 to -0.195. The 𝜒 vector is characteristic of the local
atomic environment and can be used to identify crystal structures, details of which can be found in the publication1.

𝜒 parameters can be calculated in pyscal using,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='cutoff', cutoff='adaptive')
sys.calculate_chiparams()

The calculated values for each atom can be accessed using chiparams.

Note: Associated methods

calculate_chiparams() chiparams Example

5.1.4 Voronoi tessellation to identify local structures

Voronoi tessellation can be used for identification of local structure by counting the number of faces of the Voronoi
polyhedra of an atom12. For each atom a vector ⟨𝑛3 𝑛4 𝑛5 𝑛6⟩ can be calculated where 𝑛3 is the number of Voronoi
faces of the associated Voronoi polyhedron with three vertices, 𝑛4 is with four vertices and so on. Each perfect crystal
structure such as a signature vector, for example, bcc can be identified by ⟨0 6 0 8⟩ and fcc can be identified using
⟨0 12 0 0⟩. It is also a useful tool for identifying icosahedral structure which has the fingerprint ⟨0 0 12 0⟩. In pyscal,
the voronoi vector can be calculated using,

1 Ackland, Jones, Phys. Rev. B 73, 2006
1 Finney, J. L. PRS 319 ,1970
2 Tanemura et al., PTP 58, 1977
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import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_vorovector()

The vector for each atom can be accessed using vorovector. Furthermore, the associated Voronoi volume of the
polyhedron, which may be indicative of the local structure, is also automatically calculated when finding neighbors
using find_neighbors(). This value for each atom can be accessed by volume. An averaged version of the
volume, which is averaged over the neighbors of an atom can be accessed using avg_volume.

Note: Associated methods

find_neighbors() calculate_vorovector() vorovector volume avg_volume Example

5.1.5 Centrosymmetry parameter

Centrosymmetry parameter (CSP) was introduced by Kelchner et al. to identify defects in crystals. The parameter
measures the loss of local symmetry. For an atom with 𝑁 nearest neighbors, the parameter is given by,

CSP =

𝑁/2∑︁
𝑖=1

⃒⃒
r𝑖 + r𝑖+𝑁/2

⃒⃒2
r𝑖 and r𝑖+𝑁/2 are vectors from the central atom to two opposite pairs of neighbors. There are two main methods to
identify the opposite pairs of neighbors as described in this publication. The first of the approaches is called Greedy
Edge Selection(GES) and is implemented in LAMMPS and Ovito. GES algorithm calculates a weight 𝑤𝑖𝑗 = |r𝑖 + r𝑗 |
for all combinations of neighbors around an atom and calculates CSP over the smallest 𝑁/2 weights.

A centrosymmetry parameter calculation using GES algorithm can be carried out as follows-

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12)

nmax parameter specifies the number of nearest neighbors to be considered for the calculation of CSP. The second
algorithm is called the Greedy Vertex Matching and is implemented in AtomEye and Atomsk. This algorithm orders
the neighbors atoms in order of increasing distance from the central atom. From this list, the closest neighbor is paired
with its lowest weight partner and both atoms removed from the list. This process is continued until no more atoms
are remaining in the list. CSP calculation using this algorithm can be carried out by,

import pyscal.core as pc
sys = pc.System()
sys.read_inputfile('conf.dump')
sys.find_neighbors(method='voronoi')
sys.calculate_centrosymmetry(nmax = 12, algorithm = "gvm")
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CHAPTER 6

News and updates

6.1 News and updates

August 15, 2020

pyscal is cited in the publication Evolution of local atomic structure during solidification of Fe-RE (RE=La, Ce) alloy.
See the publication here.

November 21, 2019

pyscal is selected as the E-CAM module of the month. See the news here.

November 1, 2019

pyscal paper is accepted in the Journal of Open Source Software. See the paper here.

October 17, 2019

Publication for pyscal submitted to the Journal of Open Source Software. See the review here.

July 12, 2019

Version 1.0.0 of pyscal is released.
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CHAPTER 7

pyscal reference

7.1 pyscal reference

7.1.1 pyscal Reference

pyscal.core module

Main module of pyscal. This module contains definitions of the two major classes in pyscal - the System and Atom.
Atom is a pure pybind11 class whereas System is a hybrid class with additional python definitions. For the ease of
use, Atom class should be imported from the core module. The original pybind11 definitions of Atom and System
can be found in catom and csystem respectively.

class pyscal.core.System
Bases: pyscal.csystem.System

A python/pybind11 hybrid class for holding the properties of a system.

box
A list containing the dimensions of the simulation box in the format [[x_low, x_high], [y_low, y_high],
[z_low, z_high]]

Type list of list of floats

atoms

Type list of Atom objects

Notes

A System consists of two major components - the simulation box and the atoms. All the associated variables are
then calculated using this class.
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Note: atoms can be accessed or set as atoms. However, due to technical reasons individual atoms should
be accessed using the get_atom() method. An atom can be assigned to the atom using the set_atom()
method.

Examples

>>> sys = System()
>>> sys.read_inputfile('atoms.dat')

calculate_angularcriteria()
Calculate the angular criteria for each atom :param None:

Returns

Return type None

Notes

Calculates the angular criteria for each atom as defined in [1]_. Angular criteria is useful for identification
of diamond cubic structures. Angular criteria is defined by,

𝐴 =

6∑︁
𝑖=1

(cos(𝜃𝑖) +
1

3
)2

where cos(theta) is the angle size suspended by each pair of neighbors of the central atom. A will have a
value close to 0 for structures if the angles are close to 109 degrees. The calculated A parameter for each
atom is stored in angular.

References

calculate_centrosymmetry(nmax=12, calculate_neighbors=True, algorithm=’ges’)
Calculate the centrosymmetry parameter

Parameters

• nmax (int, optional) – number of neighbors to be considered for centrosymmetry
parameters. Has to be a positive, even integer. Default 12

• calculate_neighbors (bool, optional) – if True recalculate neighbors using
number method, if False neighbor calculation is not done.

• algorithm ({'ges', 'gvm'}, optional) – ges uses the Greedy Edge Selection
algorithm, gvm uses Greedy Vertex Matching. Default ges.

Returns

Return type None

References
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Notes

Calculate the centrosymmetry parameter for each atom which can be accessed by centrosymmetry
attribute. It calculates the degree of inversion symmetry of an atomic environment. Centrosymme-
try recalculates the neighbor using the number method as specified in ¬pyscal.core.System.
find_neighbors() method. This is the ensure that the required number of neighbors are found for
calculation of the parameter. The calculation of neighbors through number method can be suppressed by
setting calculate_neighbors=False.

This method uses two different algorithms, The Greedy Edge Selection (GES) [1] or the Greedy Vertex
Matching (GVM) [2] as specified in [3]. GES algorithm is implemented in LAMMPS and Ovito, whereas
GVM is used in AtomEye and Atomsk. Please see [3] for a detailed description of the algorithms. The
algorithm can be selected using the algorithm argument. GVM values are not normalised currently.

calculate_chiparams(angles=False)
Calculate the chi param vector for each atom

Parameters angles (bool, optional) – If True, return the list of cosines of all neighbor
pairs

Returns angles – list of all cosine values, returned only if angles is True.

Return type array of floats

Notes

This method tries to distinguish between crystal structures by finding the cosines of angles formed by
an atom with its neighbors. These cosines are then historgrammed with bins [-1.0, -0.945, -0.915, -
0.755, -0.705, -0.195, 0.195, 0.245, 0.795, 1.0] to find a vector for each atom that is indicative of its local
coordination. Compared to chi parameters from chi_0 to chi_7 in the associated publication, the vector
here is from chi_0 to chi_8. This is due to an additional chi parameter which measures the number of
neighbors between cosines -0.705 to -0.195.

Parameter nlimit specifies the number of nearest neighbors to be included in the analysis to find the cutoff.
If parameter angles is true, an array of all cosine values is returned. The publication further provides
combinations of chi parameters for structural identification which is not implemented here. The calculated
chi params can be accessed using chiparams.

References

calculate_cna(cutoff=None, calculate_neighbors=True)
Calculate the Common Neighbor Analysis indices

Parameters

• cutoff (float, optional) – cutoff value to calculate CNA. If not specified, adap-
tive CNA will be used

• calculate_neighbors (bool, optional) – If True, calculate neighbors using
number method. If False, existing neighbors will be used. Default True. Only used if the
cutoff is None.

Returns cna – list of length 5 with number of atoms that belong to each structure.

Return type list of ints
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Notes

Performs the common neighbor analysis [1] and assigns a structure to each atom. If cutoff is not specified,
adaptive common neighbor analysis is used. The assigned structures can be accessed by structure.
The values assigned for stucture are 0 Unknown, 1 fcc, 2 hcp, 3 bcc, 4 icosahedral.

References

calculate_disorder(averaged=False, q=6)
Calculate the disorder criteria for each atom

Parameters

• averaged (bool, optional) – If True, calculate the averaged disorder. Default
False.

• q (int, optional) – The Steinhardt parameter value over which the bonds have to be
calculated. Default 6.

Returns

Return type None

Notes

Calculate the disorder criteria as introduced in [1]. The disorder criteria value for each atom is defined by,

𝐷𝑗 =
1

𝑁 𝑗
𝑏

𝑁𝑏∑︁
𝑖=1

[𝑆𝑗𝑗 + 𝑆𝑘𝑘 − 2𝑆𝑗𝑘]

where .. math:: S_{ij} = sum_{m=-6}^6 q_{6m}(i) q_{6m}^*(i)

The keyword averaged is True, the disorder value is averaged over the atom and its neighbors. The disorder
value can be accessed using disorder and the averaged version can be accessed using avg_disorder.
For ordered systems, the value of disorder would be zero which would increase and reach one for disor-
dered systems.

References

calculate_q(q, averaged=False)
Find the Steinhardt parameter q_l for all atoms.

Parameters

• q_l (int or list of ints) – A list of all Steinhardt parameters to be found from
2-12.

• averaged (bool, optional) – If True, return the averaged q values, default False

Returns

Return type None
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Notes

Enables calculation of the Steinhardt parameters [1] q from 2-12. The type of q values depend on the
method used to calculate neighbors. See the description find_neighbors() for more details. If the
keyword average is set to True, the averaged versions of the bond order parameter [2] is returned.

References

calculate_rdf(histobins=100, histomin=0.0, histomax=None)
Calculate the radial distribution function.

Parameters

• histobins (int) – number of bins in the histogram

• histomin (float, optional) – minimum value of the distance histogram. Default
0.0.

• histomax (float, optional) – maximum value of the distance histogram. Default,
the maximum value in all pair distances is used.

Returns

• rdf (array of ints) – Radial distribution function

• r (array of floats) – radius in distance units

calculate_solidneighbors()
Find Solid neighbors of all atoms in the system.

Parameters None –

Returns

Return type None

Notes

A solid bond is considered between two atoms if the connection between them is greater than 0.6.

calculate_sro(reference_type=1, average=True, shells=2)
Calculate short range order

Parameters

• reference_type (int, optional) – type of the atom to be used a reference. de-
fault 1

• average (bool, optional) – if True, average over all atoms of the reference type
in the system. default True.

Returns vec – The short range order averaged over the whole system for atom of the reference
type. Only returned if average is True. First value is SRO of the first neighbor shell and the
second value corresponds to the second nearest neighbor shell.

Return type list of float
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Notes

Calculates the short range order for an AB alloy using the approach by Cowley [1]. Short range order is
calculated as,

𝛼𝑖 = 1 − 𝑛𝑖

𝑚𝐴𝑐𝑖

where n_i is the number of atoms of the non reference type among the c_i atoms in the ith shell. m_A is
the concentration of the non reference atom. Please note that the value is calculated for shells 1 and 2 by
default. In order for this to be possible, neighbors have to be found first using the find_neighbors()
method. The selected neighbor method should include the second shell as well. For this purpose
method=cutoff can be chosen with a cutoff long enough to include the second shell. In order to estimate
this cutoff, one can use the calculate_rdf() method.

References

calculate_vorovector(edge_cutoff=0.05, area_cutoff=0.01, edge_length=False)
get the voronoi structure identification vector.

Parameters edge_cutoff (float, optional) – cutoff for edge length. Default 0.05.

area_cutoff [float, optional] cutoff for face area. Default 0.01.

edge_length [bool, optional] if True, a list of unrefined edge lengths are returned. Default false.

Returns vorovector – array of the form (n3, n4, n5, n6)

Return type array like, int

Notes

Returns a vector of the form (n3, n4, n5, n6), where n3 is the number of faces with 3 vertices, n4 is the
number of faces with 4 vertices and so on. This can be used to identify structures [1] [2].

The keywords edge_cutoff and area_cutoff can be used to tune the values to minimise the effect of thermal
distortions. Edges are only considered in the analysis if the edge_length/sum(edge_lengths) is at least
edge_cutoff. Similarly, faces are only considered in the analysis if the face_area/sum(face_areas) is at
least face_cutoff.

References

cluster_atoms(condition, largest=True, new_algo=False, cutoff=0)
Cluster atoms based on a property

Parameters

• condition (callable or atom property) – Either function which should take
an Atom object, and give a True/False output or an attribute of atom class which has value
or 1 or 0.

• largest (bool, optional) – If True returns the size of the largest cluster. Default
False.

Returns lc – Size of the largest cluster. Returned only if largest is True.

Return type int
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Notes

This function helps to cluster atoms based on a defined property. This property is defined by the user
through the argument condition which is passed as a parameter. condition can be of two types. The first
type is a function which takes an Atom object and should give a True/False value. condition can also be
an Atom attribute or a value from custom values stored in an atom.

When clustering, the code loops over each atom and its neighbors. If the condition is true for both host
atom and the neighbor, they are assigned to the same cluster. For example, a condition to cluster solid
atoms would be,

def condition(atom):
#if both atom is solid
return (atom1.solid)

The same can be done by passing “solid” as the condition argument instead of the above function. Passing
a function allows to evaluate complex conditions, but is slower than passing an attribute.

find_clusters(recursive=True, largest=True)
Find the clusters of all atoms in the system.

Parameters

• recursive (Bool, optional) – If True, use a recursive clustering algorithm, oth-
erwise use an id based clustering. The difference in values between two methods can be
upto 3 particles. Default True.

• largest (Bool, optional) – If True, return the number of particles in the largest
cluster. Default True.

Returns cluster – The size of the largest cluster in the system. Only returned if largest is set to
True.

Return type int

Notes

Go through all the atoms in the system and cluster them together based on the issolid parameter of the
atom. To cluster based on any user defined criteria, you can use set_solid method of Atom to explicitely
set the issolid value.

Warning: This function is deprecated and will be removed in a future release. Please use
cluster_atoms() instead.

find_largestcluster()
Find the largest solid cluster of atoms in the system from all the clusters.

Parameters None –

Returns cluster – the size of the largest cluster

Return type int

Notes

pyscal.core.System.find_clusters() has to be used before using this function.
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find_neighbors(method=’cutoff’, cutoff=None, threshold=2, filter=None, voroexp=1,
padding=1.2, nlimit=6, cells=False, nmax=12, assign_neighbor=True)

Find neighbors of all atoms in the System.

Parameters method ({'cutoff', 'voronoi', 'number'}) – cutoff method finds
neighbors of an atom within a specified or adaptive cutoff distance from the atom. voronoi
method finds atoms that share a Voronoi polyhedra face with the atom. Default, cutoff num-
ber method finds a specified number of closest neighbors to the given atom. Number only
populates

cutoff [{ float, ‘sann’, ‘adaptive’}] the cutoff distance to be used for the cutoff based neighbor calculation
method described above. If the value is specified as 0 or adaptive, adaptive method is used. If the
value is specified as sann, sann algorithm is used.

threshold [float, optional] only used if cutoff=adaptive. A threshold which is used as safe limit for
calculation of cutoff.

filter [{‘None’, ‘type’}, optional] apply a filter to nearest neighbor calculation. If the filter keyword is set
to type, only atoms of the same type would be included in the neighbor calculations. Default None.

voroexp [int, optional] only used if method=voronoi. Power of the neighbor weight used to weight
the contribution of each atom towards Steinhardt parameter values. Default 1.

padding [double, optional] only used if cutoff=adaptive or cutoff=number. A safe padding
value used after an adaptive cutoff is found. Default 1.2.

nlimit [int, optional] only used if cutoff=adaptive. The number of particles to be considered for the
calculation of adaptive cutoff. Default 6.

nmax [int, optional] only used if cutoff=number. The number of closest neighbors to be found for
each atom. Default 12

Returns

Return type None

Raises

• RuntimeWarning – raised when threshold value is too low. A low threshold value will
lead to ‘sann’ algorithm not converging when finding a neighbor. This function will try to
automatically increase threshold and check again.

• RuntimeError – raised when neighbor search was unsuccessful. This is due to a low
threshold value.

Notes

This function calculates the neighbors of each particle. There are several ways to do this. A complete
description of the methods can be found here.

Method cutoff and specifying a cutoff radius uses the traditional approach being the one in which the
neighbors of an atom are the ones that lie in the cutoff distance around it.

In order to reduce time during the distance sorting during the adaptive methods, pyscal sets an initial guess
for a cutoff distance. This is calculated as,

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 * (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑜𝑥 𝑣𝑜𝑙𝑢𝑚𝑒/𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠)(1/3)

threshold is a safe multiplier used for the guess value and can be set using the threshold keyword.
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In Method cutoff, if cutoff='adaptive', an adaptive cutoff is found during runtime for each atom
[1]. Setting the cutoff radius to 0 also uses this algorithm. The cutoff for an atom i is found using,

𝑟𝑐(𝑖) = 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 * ((1/𝑛𝑙𝑖𝑚𝑖𝑡) *
𝑛𝑙𝑖𝑚𝑖𝑡∑︁
𝑗=1

(𝑟𝑖𝑗))

padding is a safe multiplier to the cutoff distance that can be set through the keyword padding. nlimit
keyword sets the limit for the top nlimit atoms to be taken into account to calculate the cutoff radius.

In Method cutoff, if cutoff='sann', sann algorithm is used [2]. There are no parameters to tune sann
algorithm.

The second approach is using Voronoi polyhedra which also assigns a weight to each neighbor in the ratio
of the face area between the two atoms. Higher powers of this weight can also be used [3]. The keyword
voroexp can be used to set this weight.

If method os number, instead of using a cutoff value for finding neighbors, a specified number of closest
atoms are found. This number can be set through the argument nmax.

Warning: Adaptive and number cutoff uses a padding over the intial guessed “neighbor distance”. By
default it is 2. In case of a warning that threshold is inadequate, this parameter should be further
increased. High/low value of this parameter will correspond to the time taken for finding neighbors.

References

find_solids(bonds=0.5, threshold=0.5, avgthreshold=0.6, cluster=True, q=6, new_algo=False, cut-
off=0)

Distinguish solid and liquid atoms in the system.

Parameters

• bonds (int or float, optional) – Minimum number of solid bonds for an atom
to be identified as a solid if the value is an integer. Minimum fraction of neighbors of an
atom that should be solid for an atom to be solid if the value is float between 0-1. Default
0.5.

• threshold (double, optional) – Solid bond cutoff value. Default 0.5.

• avgthreshold (double, optional) – Value required for Averaged solid bond cut-
off for an atom to be identified as solid. Default 0.6.

• cluster (bool, optional) – If True, cluster the solid atoms and return the number
of atoms in the largest cluster.

• q (int, optional) – The Steinhardt parameter value over which the bonds have to be
calculated. Default 6.

Returns solid – Size of the largest solid cluster. Returned only if cluster=True.

Return type int

Notes

The neighbors should be calculated before running this function. Check find_neighbors() method.
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bonds define the number of solid bonds of an atom to be identified as solid. Two particles are said to be
‘bonded’ if [1],

𝑠𝑖𝑗 =

6∑︁
𝑚=−6

𝑞6𝑚(𝑖)𝑞*6𝑚(𝑖) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

where threshold values is also an optional parameter.

If the value of bonds is a fraction between 0 and 1, at least that much of an atom’s neighbors should be
solid for the atom to be solid.

An additional parameter avgthreshold is an additional parameter to improve solid-liquid distinction. In
addition to having a the specified number of bonds,

⟨𝑠𝑖𝑗⟩ > 𝑎𝑣𝑔𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

also needs to be satisfied. In case another q value has to be used for calculation of S_ij, it can be set used
the q attribute.

References

get_atom(index)
Get the Atom object at the queried position in the list of all atoms in the System.

Parameters index (int) – index of required atom in the list of all atoms.

Returns atom – atom object at the queried position.

Return type Atom object

get_custom(atom, customkeys)
Get a custom attribute from Atom

Parameters

• atom (Atom object) –

• customkeys (list of strings) – the list of keys to be found

Returns vals – array of custom values

Return type list

get_distance(atom1, atom2, vector=False)
Get the distance between two atoms.

Parameters

• atom1 (Atom object) – first atom

• atom2 (Atom object) – second atom

• vector (bool, optional) – If True, the displacement vector connecting the atoms
is also returned. default false.

Returns distance – distance between the first and second atom.

Return type double
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Notes

Periodic boundary conditions are assumed by default.

get_qvals(q, averaged=False)
Get the required q_l (Steinhardt parameter) values of all atoms.

Parameters

• q_l (int or list of ints) – required q_l value with l from 2-12

• averaged (bool, optional) – If True, return the averaged q values, default False

Returns qvals – list of q_l of all atoms.

Return type list of floats

Notes

The function returns a list of q_l values in the same order as the list of the atoms in the system.

greedy_edge_selection(nmax)
Greedy edge selection scheme for centrosymmetry parameters

Parameters nmax (int) – number of neighbors to be considered for centrosymmetry parame-
ters

Returns

Return type None

References

greedy_vertex_matching(nmax)
Greedy vertex matching scheme for centrosymmetry parameters

Parameters nmax (int) – number of neighbors to be considered for centrosymmetry parame-
ters

Returns

Return type None

References

read_inputfile(filename, format=’lammps-dump’, frame=-1, compressed=False, cus-
tomkeys=None, is_triclinic=False)

Read input file that contains the information of system configuration.

Parameters

• filename (string) – name of the input file.

• format ({'lammps-dump', 'poscar', 'ase', 'mdtraj'}) – format of the
input file, in case of ase the ASE Atoms object

• compressed (bool, optional) – If True, force to read a gz compressed format,
default False.

7.1. pyscal reference 55



pyscal Documentation, Release 2.7.0

• frame (int) – If the trajectory contains more than one time step, the slice can be speci-
fied using the frame option.

Note: works only with lammps-dump format.

• customkeys (list) – A list containing names of headers of extra data that needs to be
read in from the input file.

• is_triclinc (bool, optional) – Only used in the case of format=’ase’. If the
read ase object is triclinic, this options should be set to True.

Returns

Return type None

Notes

format keyword specifies the format of the input file. Currently only a lammps-dump and poscar files are
supported. Additionaly, the widely use Atomic Simulation environment (https://wiki.fysik.dtu.dk/ase/ase/
ase.html). mdtraj objects (http://mdtraj.org/1.9.3/) are also supported by using the keyword ‘mdtraj’ for
format. Please note that triclinic boxes are not yet supported for mdtraj format. Atoms object can also be
used directly. This function uses the traj_process() module to process a file which is then assigned
to system.

compressed keyword is not required if a file ends with .gz extension, it is automatically treated as a com-
pressed file.

frame keyword allows to read in a particular slice from a long trajectory. If all slices need to analysed, this
is a very inefficient way. For handling multiple time slices, the traj_process() module offers a better
set of tools.

Triclinic simulation boxes can also be read in for lammps-dump. No special keyword is necessary.

If custom_keys are provided, this extra information is read in from input files if available. This information
is not passed to the C++ instance of atom, and is stored as a dictionary. It can be accessed directly as
atom.custom[‘customval’]

reset_neighbors()
Reset the neighbors of all atoms in the system.

Parameters None –

Returns

Return type None

Notes

It is used automatically when neighbors are recalculated.

set_atom(atom)
Return the atom to its original location after modification.

Parameters atom (Atom) – atom to be replaced

Returns

Return type None
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Notes

For example, an Atom at location i in the list of all atoms in System can be queried by, atom =
System.get_atom(i), then any kind of modification, for example, the position of the Atom can done
by, atom.pos = [2.3, 4.5, 4.5]. After modification, the Atom can be set back to its position in
System by set_atom().

Although the complete list of atoms can be accessed or set using atoms = sys.atoms, get_atom and
set_atom functions should be used for accessing individual atoms. If an atom already exists at that index
in the list, it will be overwritten and will lead to loss of information.

to_file(outfile, format=’lammps-dump’, customkeys=None, compressed=False, timestep=0)
Save the system instance to a trajectory file.

Parameters

outfile [string] name of the output file

format [string, optional] format of the output file, default lammps-dump Currently only lammps-dump
format is supported.

customkeys [list of strings, optional] a list of extra atom wise values to be written in the output file.

compressed [bool, optional] If true, the output is written as a compressed file.

timestep [int, optional] timestep to be written to file. default 0

Returns

Return type None

Notes

pyscal.core.test()
A simple function to test if the module works

Parameters None –

Returns works – True if the module works and could create a System and Atom object False other-
wise.

Return type bool

class pyscal.catom.Atom
Bases: pybind11_builtins.pybind11_object

Class to store atom details.

Parameters

• pos (list of floats of length 3) – position of the Atom, default [0,0,0]

• id (int) – id of the Atom, default 0

• type (int) – type of the Atom, default 1
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Notes

A pybind11 class for holding the properties of a single atom. Various properties of the atom can be accessed
through the attributes and member functions which are described below in detail. Atoms can be created individ-
ually or directly by reading a file. Check the examples for more details on how atoms are created. For creating
atoms directly from an input file check the documentation of System class.

Although an Atom object can be created independently, Atom should be thought of inherently as members of the
System class. All the properties that define an atom are relative to the parent class. System has a list of all
atoms. All the properties of an atom, hence should be calculated through System.

Examples

>>> #method 1 - individually
>>> atom = Atom()
>>> #now set positions of the atoms
>>> atom.pos = [23.0, 45.2, 34.2]
>>> #now set id
>>> atom.id = 23
>>> #now set type
>>> atom.type = 1
>>> #Setting through constructor
>>> atom = Atom([23.0, 45.2, 34.2], 23, 1)

References

Creation of atoms.

allaq
list of floats. list of all averaged q values of the atom.

allq
list of floats. list of all q values of the atom.

angular
Float. The value of angular parameter A of an atom. The angular parameter measures the tetrahe-
dral coordination of an atom. Meaningful values are only returned if the property is calculated using
calculate_angularcriteria().

avg_angular
Float. The average angular parameter value. Not used currently.

avg_disorder
Float. The value of averaged disorder parameter.

avg_sij
float. Value of averaged s_ij which is used for identification of solid atoms. s_ij is defined by

𝑠𝑖𝑗 =

𝑙∑︁
𝑚=−𝑙

𝑞𝑙𝑚(𝑖)𝑞*𝑙𝑚(𝑖)

avg_volume
float. Averaged version of the Voronoi volume which is calculated as an average over itself and its neigh-
bors. Only calculated when the find_neighbors() using the method=’voronoi’ option is used.

bond_chain_count

58 Chapter 7. pyscal reference

https://pyscal.readthedocs.io/en/latest/examples.html


pyscal Documentation, Release 2.7.0

bonds
Int. The number of solid bonds of an atom.

calculate_adaptive_cna()

centrosymmetry
Float. The value of centrosymmetry parameter.

chiparams
Float. The value of chiparameter of an atom. The return value is a vector of length 8. Meaningful values
are only returned if chi params are calculated using calculate_chiparams().

cluster
int. identification number of the cluster that the atom belongs to.

common_neighbor_bond_count

common_neighbor_bonds

common_neighbor_count

common_neighbors

condition
int. condition that specifies if an atom is included in the clustering algorithm or not. Only atoms with the
value of condition=1 will be used for clustering in cluster_atoms().

coordination
int. coordination number of the atom. Coordination will only be updated after neighbors are calculated
using find_neighbors().

custom
dict. dictionary specfying custom values for an atom. The module only stores the id, type and position
of the atom. If any extra values need to be stored, they can be stored in custom using atom.custom =
{“velocity”:12}. read_inputfile() can also read in extra atom information. By default, custom
values are treated as string.

cutoff
double. cutoff used for finding neighbors for each atom.

disorder
Float. The value of disorder parameter.

edge_lengths
list of floats. For each face, this vector contains the lengths of edges that make up the Voronoi polyhedra of
the atom. Only calculated when the find_neighbors() using the method=’voronoi’ option is used.

face_perimeters
list of floats. List consisting of the perimeters of each Voronoi face of an atom. Only calculated when the
find_neighbors() using the method=’voronoi’ option is used.

face_vertices
list of floats. A list of the number of vertices shared between an atom and its neighbors. Only calculated
when the find_neighbors() using the method=’voronoi’ option is used.

get_q()
Calculate the steinhardt parameter q_l value.

Parameters

• q (int or list of ints) – number of the required q_l - from 2-12

• averaged (bool, optional) – If True, return the averaged q values, If False, return
the non averaged ones default False
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Returns q_l – the value(s) of the queried Steinhardt parameter(s).

Return type float or list of floats

Notes

Please check this link for more details about Steinhardts parameters and the averaged versions.

Meaningful values are only returned if calculate_q() is used.

get_qlm()
Get the q_lm values.

Parameters

• q (int) – number of the required q_l - from 2-12

• averaged (bool, optional) – If True, return the averaged qlm values, If False,
return the non averaged ones default False

Returns

• q_lm (complex vector) – vector of complex numbers.

• Meaningful values are only returned if calculate_q() is used.

id
int. Id of the atom.

largest_cluster
bool. True if the atom belongs to the largest cluster, False otherwise. Largest cluster is only identified after
using the cluster_atoms() function.

lcutlarge

lcutsmall

loc
int. indicates the position of the atom in the list of all atoms.

local_angles
List of floats of length 2. List of longitude and colatitude of an atom to its neighbors.

mask
bool. Mask variable for atom. If mask is true, the atom is ignored from calculations.

neighbor_distance
List of floats. List of neighbor distances of the atom.

neighbor_vector
List of floats of length 3. List of vectors connecting an atom to its neighbors.

neighbor_weights
List of floats. Used to weight the contribution of each neighbor atom towards the value of Steinhardt’s
parameters. By default, each atom has a weight of 1 each. However, if find_neighbors() is used with
method=’voronoi’, each neighbor gets a weight proportional to the area shared between the neighboring
atom and host atom.

neighbors
List of ints. List of neighbors of the atom. The list contains indices of neighbor atoms which indicate their
position in the list of all atoms.

next_neighbor_distances
double. cutoff used for finding neighbors for each atom.
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next_neighbors
double. cutoff used for finding neighbors for each atom.

pos
List of floats of the type [x, y, z], default [0, 0, 0]. Position of the atom.

set_q()
Set the value of steinhardt parameter q_l.

Parameters

• q (int or list of ints) – number of the required q_l - from 2-12

• val (float or list of floats) – value(s) of Steinhardt parameter(s).

• averaged (bool, optional) – If True, return the averaged q values, If False, return
the non averaged ones default False

Returns

Return type None

sij
float. Value of s_ij which is used for identification of solid atoms. s_ij is defined by

𝑠𝑖𝑗 =

𝑙∑︁
𝑚=−𝑙

𝑞𝑙𝑚(𝑖)𝑞*𝑙𝑚(𝑖)

solid
bool. True if the atom is solid, False otherwise. Solid atoms are only identified after using the
find_solids() function.

sro
Float. The value of short range order parameter.

structure
int. Indicates the structure of atom. Not used currently.

surface
bool. True if the atom has at least one liquid neighbor, False otherwise. Surface atoms are only identified
after using the find_solids() function.

type
int. int specifying type of the atom.

vertex_numbers
list of floats. For each Voronoi face of the atom, this values includes a List of vertices that constitute the
face. Only calculated when the find_neighbors() using the method=’voronoi’ option is used.

vertex_vectors
list of floats. A list of positions of each vertex of the Voronoi polyhedra of the atom. Only calculated when
the find_neighbors() using the method=’voronoi’ option is used.

volume
float. Voronoi volume of the atom. The Voronoi volume is only calculated if neighbors are found using the
find_neighbors() using the method=’voronoi’ option.

vorovector
list of ints. A vector of the form (n3, n4, n5, n6) where n3 is the number of faces with 3 vertices, n4 is
the number of faces with 4 vertices and so on. This can be used to identify structures [1][2]. Vorovector is
calculated if the calculate_vorovector() method is used.
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References

pyscal.crystal_structures module

pyscal module for creating crystal structures.

pyscal.crystal_structures.make_crystal(structure, lattice_constant=1.0, repetitions=None,
ca_ratio=1.633, noise=0)

Create a basic crystal structure and return it as a list of Atom objects and box dimensions.

Parameters

• structure ({'bcc', 'fcc', 'hcp', 'diamond' or 'l12'}) – type of the
crystal structure

• lattice_constant (float, optional) – lattice constant of the crystal structure,
default 1

• repetitions (list of ints of len 3, optional) – of type [nx, ny, nz],
repetions of the unit cell in x, y and z directions. default [1, 1, 1].

• ca_ratio (float, optional) – ratio of c/a for hcp structures, default 1.633

• noise (float, optional) – If provided add normally distributed noise with standard
deviation noise to the atomic positions.

Returns

• atoms (list of Atom objects) – list of all atoms as created by user input

• box (list of list of floats) – list of the type [[xlow, xhigh], [ylow, yhigh], [zlow, zhigh]] where
each of them are the lower and upper limits of the simulation box in x, y and z directions
respectively.

Examples

>>> atoms, box = make_crystal('bcc', lattice_constant=3.48, repetitions=[2,2,2])
>>> sys = System()
>>> sys.assign_atoms(atoms, box)

pyscal.traj_process module

pyscal module containing methods for processing of a trajectory. Methods for reading of input files formats, writing
of output files etc are provided in this module.

pyscal.traj_process.read_ase(aseobject, check_triclinic=False, box_vectors=False)
Function to read from a ASE atoms objects

Parameters

• aseobject (ASE Atoms object) – name of the ASE atoms object

• triclinic (bool, optional) – True if the configuration is triclinic

• box_vectors (bool, optional) – If true, return the full box vectors along with
boxdims which gives upper and lower bounds. default False.

pyscal.traj_process.read_lammps_dump(infile, compressed=False, check_triclinic=False,
box_vectors=False, customkeys=None)

Function to read a lammps dump file format - single time slice.
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Parameters

• infile (string) – name of the input file

• compressed (bool, optional) – force to read a gz zipped file. If the filename ends
with .gz, use of this keyword is not necessary. Default True.

• check_triclinic (bool, optional) – If true check if the sim box is triclinic. De-
fault False.

• box_vectors (bool, optional) – If true, return the full box vectors along with
boxdims which gives upper and lower bounds. default False.

• customkeys (list of strings, optional) – A list of extra keywords to read
from trajectory file.

Returns

• atoms (list of Atom objects) – list of all atoms as created by user input

• boxdims (list of list of floats) – The dimensions of the box. This is of the form [[xlo,
xhi],[ylo, yhi],[zlo, zhi]] where lo and hi are the upper and lower bounds of the simulation
box along each axes. For triclinic boxes, this is scaled to [0, scalar length of the vector].

• box (list of list of floats) – list of the type [[x1, x2, x3], [y1, y2, y3], [zz1, z2, z3]] which are
the box vectors. Only returned if box_vectors is set to True.

• triclinic (bool) – True if the box is triclinic. Only returned if check_triclinic is set to True

• .. note:: – Values are always returned in the order atoms, boxdims, box, triclinic if all return
keywords are selected. For example, ff check_triclinic is not selected, the return values
would still preserve the order and fall back to atoms, boxdims, box.

Notes

Read a lammps-dump style snapshot that can have variable headers, reads in type and so on. Zipped files which
end with a .gz can also be read automatically. However, if the file does not end with a .gz extension, keyword
compressed = True can also be used.

Examples

>>> atoms, box = read_lammps_dump('conf.dump')
>>> atoms, box = read_lammps_dump('conf.dump.gz')
>>> atoms, box = read_lammps_dump('conf.d', compressed=True)

pyscal.traj_process.read_mdtraj(mdobject, check_triclinic=False, box_vectors=False)
Function to read from an MDTraj atoms objects

Parameters

• mdobject (MDTraj Atoms object) – name of the MDTraj atoms object

• triclinic (bool, optional) – True if the configuration is triclinic

• box_vectors (bool, optional) – If true, return the full box vectors along with
boxdims which gives upper and lower bounds. default False.

pyscal.traj_process.read_poscar(infile, compressed=False, box_vectors=False)
Function to read a POSCAR format.

Parameters
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• infile (string) – name of the input file

• compressed (bool, optional) – force to read a gz zipped file. If the filename ends
with .gz, use of this keyword is not necessary, Default False

Returns

• atoms (list of Atom objects) – list of all atoms as created by user input

• box (list of list of floats) – list of the type [[xlow, xhigh], [ylow, yhigh], [zlow, zhigh]] where
each of them are the lower and upper limits of the simulation box in x, y and z directions
respectively.

Examples

>>> atoms, box = read_poscar('POSCAR')
>>> atoms, box = read_poscar('POSCAR.gz')
>>> atoms, box = read_poscar('POSCAR.dat', compressed=True)

pyscal.traj_process.split_traj_lammps_dump(infile, compressed=False)
Read in a LAMMPS dump trajectory file and convert it to individual time slices.

Parameters

• filename (string) – name of input file

• compressed (bool, optional) – force to read a gz zipped file. If the filename ends
with .gz, use of this keyword is not necessary, Default False.

Returns snaps – a list of filenames which contain individual frames from the main trajectory.

Return type list of strings

pyscal.traj_process.split_trajectory(infile, format=’lammps-dump’, compressed=False)
Read in a trajectory file and convert it to individual time slices.

Parameters

• filename (string) – name of input file

• format (format of the input file) – only lammps-dump is supported now.

• compressed (bool, optional) – force to read a gz zipped file. If the filename ends
with .gz, use of this keyword is not necessary.

Returns snaps – a list of filenames which contain individual frames from the main trajectory.

Return type list of strings

Notes

This is a wrapper function around split_traj_lammps_dump function.

pyscal.traj_process.write_poscar(sys, outfile, comments=’pyscal’)
Function to read a POSCAR format.

Parameters outfile (string) – name of the input file

pyscal.traj_process.write_structure(sys, outfile, format=’lammps-dump’, compressed=False,
customkey=None, customvals=None, timestep=0)

Write the state of the system to a trajectory file.

Parameters
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• sys (System object) – the system object to be written out

• outfile (string) – name of the output file

• format (string, optional) – the format of the output file, as of now only lammps-
dump format is supported.

• compressed (bool, default false) – write a .gz format

• customkey (string or list of strings, optional) – If specified, it adds
this custom column to the dump file. Default None.

• customvals (list or list of lists, optional) – If customkey is specified,
customvals take an array of the same length as number of atoms, which contains the values
to be written out.

• timestep (int, optional) – Specify the timestep value, default 0

Returns

Return type None

pyscal.misc module

pyscal.misc.compare_atomic_env(infile, atomtype=2, precision=2, format=’poscar’,
print_results=True, return_system=False)

Compare the atomic environment of given types of atoms in the inputfile. The comparison is made in terms of
Voronoi volume and Voronoi fingerprint.

Parameters

• infile (string) – name of the inputfile

• atomtype (int, optional) – type of the atom default 2

• precision (float, optional) – precision for comparing Voronoi volumes default
3

• format (string, optional) – format of the input file default poscar

• print_results (bool, optional) – if True, print the results. If False, return the
data instead. default True

• return_system (bool, optional) – if True, return the system object. default False

Returns

• vvx (list of floats) – unique Voronoi volumes. Returned only if print results is False

• vrx (list of strings) – unique Voronoi polyhedra. Returned only if print results is False

• vvc (list of ints) – number of unique quantities specified above. Returned only if print results
is False
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CHAPTER 8

Support, contributing and extending

8.1 Support, contributing and extending

pyscal welcomes and appreciates contribution and extension to the module. Rather than local modifications, we request
that the modifications be submitted through a pull request, so that the module can be continuously improved.

The following links will help you get started with contributing to pyscal.

8.1.1 Contributions to existing features

Reporting and fixing bugs

In case a bug is found in the module, it can be reported on the issues page of the repository. After clicking on the new
issue button, there is template already provided for Bug report. Please choose this and make sure the necessary fields
are filled. Once a bug is reported, the status can once again monitored on the issues page. Additionally, you are of
course very welcome to fix any existing bugs.

8.1.2 New feautures

If you have an idea for new feature, you can submit a feature idea through the issues page of the repository. After
choosing new issue, please choose the template for feature request. As much as information as you can provide about
the new feauture would be greatly helpful. Additionally, you could also work on feature requests already on the issues
page. The following instructions will help you get started with local feature development.

Setting up local environment

1. The first step is to fork pyscal. A detailed tutorial on forking can be found here. After forking, clone the
repository to your local machine.

2. We recommend creating a virtual environment to test new features or improvements to features. See this link
for help on managing environments.
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3. Once the environment is set up, you can create a new branch for your feature by git checkout -b
new_feauture.

4. Now implement the necessary feature.

5. Once done, you can reinstall pyscal by python setup.py install. After that please make sure that the
existing tests work by running pytest tests/ from the main module folder.

6. If the tests work, you are almost done! If the new feature is not covered in existing tests, you can to write a new
test in the tests folder. pyscal uses pytest for tests. This link will help you get started.

7. Add the necessary docstrings for the new functions implemented. pyscal uses the numpy docstring format for
documentation.

8. Bonus task: Set up few examples that document how the feature works in the docs/source/ folder and link
it to the examples section.

9. Final step - Submit a pull request through github. Before you submit, please make sure that the new feature
is documented and has tests. Once the request is submitted, automated tests would be done. Your pull request
will fail the tests if - the unit tests fail, or if the test coverage falls below 80%. If all tests are successful, your
feauture will be incorporated to pyscal and your contributions will be credited.

If you have trouble with any of the steps, or you need help, please send an email and we will be happy to help! All of
the contributions are greatly appreciated and will be credited in Developers/Acknowledgements page.

8.2 Help and support

In case of bugs and feature improvements, you are welcome to create a new issue on the github repo. You are also
welcome to fix a bug or implement a feature. Please see the extending and contributing section for more details.

Any other questions or suggestions are welcome, please contact us.

8.3 Common issues

• Installation of the package without administrator privileges

In case of any problems with installation, we recommend that you install the package in a conda environment.
Details on managing and creating environments can be found here .

• C++11 is not available

pyscal needs C++11 to install and run. In case you do not have c++11, it can be installed in a conda environment
by following this link . After installing gcc, once the conda environment is reactivated, the environment variables
are set. The installation should proceed now without problems.

• cmake is not available

cmake can be installed in a conda environment. Details on managing and creating environments can be found
here . The cmake package can be installed from conda following this link.
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Credits

9.1 Citing the code

If you use pyscal in your work, the citation of the following article will be greatly appreciated:

Sarath Menon, Grisell Díaz Leines and Jutta Rogal (2019). pyscal: A python module for structural analysis of atomic
environments. Journal of Open Source Software, 4(43), 1824, https://doi.org/10.21105/joss.01824

Citation in bib format can be downloaded here.

9.2 Developers

• Sarath Menon

• Grisell Díaz Leines

• Jutta Rogal

9.3 Contributers

• Jan Janßen - developing and maintaining a conda-forge recipe.

9.4 Acknowledgements

We acknowledge Bond order analysis code for the inspiration and the base for what later grew to be pyscal. We are
also thankful to the developers of Voro++ and pybind11 for developing the great tools that we could use in pyscal.

We are grateful to Alberto Ferrari, Abril Azócar Guzmán, Matteo Rinaldi and Yanyan Liang for helping with testing the
code and providing valuable feedback. We also thank Mahesh Prasad for the helpful discussions in the implementation
of this module.
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CHAPTER 10

License

10.1 pyscal License

pyscal uses the GNU General Public License Version 3 . A full description is available in the above link or in the
repository.

In addition, pyscal license of other codes that pyscal uses are given below-

10.1.1 Voro++ license

Voro++ Copyright (c) 2008, The Regents of the University of California, through Lawrence Berkeley National Labo-
ratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
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WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.

10.1.2 pybind 11 license

Copyright (c) 2016 Wenzel Jakob (wenzel.jakob@epfl.ch), All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without imposing a separate written license agree-
ment for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual
license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and
sublicense such enhancements or derivative works thereof, in binary and source code form.

10.1.3 sphinx theme license

Copyright (c) 2007-2013 by the Sphinx team (see AUTHORS file). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.
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THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.
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