
pyscal Documentation
Release 2.10.13

Sarath Menon, Grisell Díaz Leines, Jutta Rogal

Mar 12, 2021

CONTENTS

1 Highlights 3

2 Getting started 5

3 pyscal reference 7
3.1 pyscal reference . 7

Python Module Index 33

Index 35

i

ii

pyscal Documentation, Release 2.10.13

pyscal is a python module for the calculation of local atomic structural environments including Steinhardt’s bond
orientational order parameters1 during post-processing of atomistic simulation data. The core functionality of pyscal
is written in C++ with python wrappers using pybind11 which allows for fast calculations and easy extensions in
python.

Steinhardt’s order parameters are widely used for the identification of crystal structures3. They are also used to distin-
guish if an atom is in a solid or liquid environment4. pyscal is inspired by the BondOrderAnalysis code, but has since
incorporated many additional features and modifications. The pyscal module includes the following functionalities:

1 Steinhardt, P. J., Nelson, D. R., & Ronchetti, M. (1983). Physical Review B, 28.
3 Mickel, W., Kapfer, S. C., Schröder-Turk, G. E., & Mecke, K. (2013). The Journal of Chemical Physics, 138.
4 Auer, S., & Frenkel, D. (2005). Advances in Polymer Science, 173.

CONTENTS 1

https://dev.azure.com/sarathrmenon/pyscal/_build/latest?definitionId=1&branchName=master
https://codecov.io/gh/srmnitc/pyscal
https://mybinder.org/v2/gh/srmnitc/pybop/master?filepath=examples%2F
https://anaconda.org/conda-forge/pyscal
https://conda.anaconda.org/pyscal
https://joss.theoj.org/papers/168eca482155601dc517523899527a4e
https://anaconda.org/conda-forge/pyscal
https://pybind11.readthedocs.io/en/stable/intro.html
https://homepage.univie.ac.at/wolfgang.lechner/bondorderparameter.html
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.784
https://aip.scitation.org/doi/full/10.1063/1.4774084
https://link.springer.com/chapter/10.1007/b99429

pyscal Documentation, Release 2.10.13

2 CONTENTS

CHAPTER

ONE

HIGHLIGHTS

• calculation of Steinhardt’s order parameters and their averaged version2.

• links with the Voro++ code, for the calculation of Steinhardt parameters weighted using the face areas of Voronoi
polyhedra?.

• classification of atoms as solid or liquid?.

• clustering of particles based on a user defined property.

• methods for calculating radial distribution functions, Voronoi volumes of particles, number of vertices and face
area of Voronoi polyhedra, and coordination numbers.

• calculation of angular parameters to identify diamond structure5.

2 Lechner, W., & Dellago, C. (2008). The Journal of Chemical Physics, 129.
5 Uttormark, M. J., Thompson, M. O., Clancy, P. (1993). Physical Review B, 47.

3

http://math.lbl.gov/voro++/
https://aip.scitation.org/doi/full/10.1063/1.2977970
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.15717

pyscal Documentation, Release 2.10.13

4 Chapter 1. Highlights

CHAPTER

TWO

GETTING STARTED

For general documentation and examples see here .

5

https://pyscal.org

pyscal Documentation, Release 2.10.13

6 Chapter 2. Getting started

CHAPTER

THREE

PYSCAL REFERENCE

3.1 pyscal reference

3.1.1 pyscal Reference

pyscal.core module

Main module of pyscal. This module contains definitions of the two major classes in pyscal - the System and Atom.
Atom is a pure pybind11 class whereas System is a hybrid class with additional python definitions. For the ease of
use, Atom class should be imported from the core module. The original pybind11 definitions of Atom and System
can be found in catom and csystem respectively.

class pyscal.core.System
Bases: pyscal.csystem.System

A python/pybind11 hybrid class for holding the properties of a system.

box
A list containing the dimensions of the simulation box in the format [[x_low, x_high], [y_low, y_high],
[z_low, z_high]]

Type list of list of floats

atoms

Type list of Atom objects

Notes

A System consists of two major components - the simulation box and the atoms. All the associated variables are
then calculated using this class.

Note: atoms can be accessed or set as atoms. However, due to technical reasons individual atoms should
be accessed using the get_atom() method. An atom can be assigned to the atom using the set_atom()
method.

7

pyscal Documentation, Release 2.10.13

Examples

>>> sys = System()
>>> sys.read_inputfile('atoms.dat')

add_atoms(atoms)
Add a given list of atoms

Parameters atoms (List of Atoms) –

Returns

Return type None

property atoms
Atom access

property box
Wrap for inbuilt box

calculate_angularcriteria()
Calculate the angular criteria for each atom :param None:

Returns

Return type None

Notes

Calculates the angular criteria for each atom as defined in [1]_. Angular criteria is useful for identification
of diamond cubic structures. Angular criteria is defined by,

𝐴 =

6∑︁
𝑖=1

(cos(𝜃𝑖) +
1

3
)2

where cos(theta) is the angle size suspended by each pair of neighbors of the central atom. A will have a
value close to 0 for structures if the angles are close to 109 degrees. The calculated A parameter for each
atom is stored in angular.

References

calculate_centrosymmetry(nmax=12, get_vals=True)
Calculate the centrosymmetry parameter

Parameters nmax (int, optional) – number of neighbors to be considered for centrosym-
metry parameters. Has to be a positive, even integer. Default 12

Returns

Return type None

8 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

Notes

Calculate the centrosymmetry parameter for each atom which can be accessed by centrosymmetry
attribute. It calculates the degree of inversion symmetry of an atomic environment. Centrosymme-
try recalculates the neighbor using the number method as specified in ¬pyscal.core.System.
find_neighbors() method. This is the ensure that the required number of neighbors are found for
calculation of the parameter.

The Greedy Edge Selection (GES) [1] as specified in [2] in used in this method. GES algorithm is imple-
mented in LAMMPS and Ovito. Please see [2] for a detailed description of the algorithms.

References

calculate_chiparams(angles=False)
Calculate the chi param vector for each atom

Parameters angles (bool, optional) – If True, return the list of cosines of all neighbor
pairs

Returns angles – list of all cosine values, returned only if angles is True.

Return type array of floats

Notes

This method tries to distinguish between crystal structures by finding the cosines of angles formed by
an atom with its neighbors. These cosines are then historgrammed with bins [-1.0, -0.945, -0.915, -
0.755, -0.705, -0.195, 0.195, 0.245, 0.795, 1.0] to find a vector for each atom that is indicative of its local
coordination. Compared to chi parameters from chi_0 to chi_7 in the associated publication, the vector
here is from chi_0 to chi_8. This is due to an additional chi parameter which measures the number of
neighbors between cosines -0.705 to -0.195.

Parameter nlimit specifies the number of nearest neighbors to be included in the analysis to find the cutoff.
If parameter angles is true, an array of all cosine values is returned. The publication further provides
combinations of chi parameters for structural identification which is not implemented here. The calculated
chi params can be accessed using chiparams.

References

calculate_cna(lattice_constant=None)
Calculate the Common Neighbor Analysis indices

Parameters lattice_constant (float, optional) – lattice constant to calculate
CNA. If not specified, adaptive CNA will be used

Returns cna – dict containing the cna signature of the system

Return type dict

3.1. pyscal reference 9

pyscal Documentation, Release 2.10.13

Notes

Performs the common neighbor analysis [1][2] or the adaptive common neighbor analysis [2] and assigns
a structure to each atom.

If lattice_constant is specified, a convential common neighbor analysis is used. If lattice_constant is
not specified, adaptive common neighbor analysis is used. The assigned structures can be accessed by
structure. The values assigned for stucture are 0 Unknown, 1 fcc, 2 hcp, 3 bcc, 4 icosahedral.

References

calculate_disorder(averaged=False, q=6)
Calculate the disorder criteria for each atom

Parameters

• averaged (bool, optional) – If True, calculate the averaged disorder. Default
False.

• q (int, optional) – The Steinhardt parameter value over which the bonds have to be
calculated. Default 6.

Returns

Return type None

Notes

Calculate the disorder criteria as introduced in [1]. The disorder criteria value for each atom is defined by,

𝐷𝑗 =
1

𝑁 𝑗
𝑏

𝑁𝑏∑︁
𝑖=1

[𝑆𝑗𝑗 + 𝑆𝑘𝑘 − 2𝑆𝑗𝑘]

where .. math:: S_{ij} = sum_{m=-6}^6 q_{6m}(i) q_{6m}^*(i)

The keyword averaged is True, the disorder value is averaged over the atom and its neighbors. The disorder
value can be accessed using disorder and the averaged version can be accessed using avg_disorder.
For ordered systems, the value of disorder would be zero which would increase and reach one for disor-
dered systems.

References

calculate_energy(species='Au', pair_style=None, pair_coeff=None, mass=1.0, averaged=False)
Calculate the potential energy of atom using LAMMPS

Parameters

• species (str) – Name of atomic species

• pair_style (str) – lammps pair style

• pair_coeff (str) – lammps pair coeff

• mass (float) – mass of the atoms

• averaged (bool, optional) – Average the energy over neighbors if True default
False.

Returns

10 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

Return type None

Notes

Calculates the potential energy per atom using the given potential through LAMMPS. More documentation
coming up. . .

Values can be accessed through pyscal.catom.Atom.energy Averaged values can be accessed
through pyscal.catom.Atom.avg_energy

If averaged is True, the energy is averaged over the neighbors of an atom. If neighbors were calculated
before calling this method, those neighbors are used for averaging. Otherwise neighbors are calculated on
the fly with an adaptive cutoff method.

calculate_entropy(rm, sigma=0.2, rstart=0.001, h=0.001, local=False, M=12, N=6, ra=None,
averaged=False, switching_function=False)

Calculate the entropy parameter for each atom

Parameters

• rm (float) – cutoff distance for integration of entropy parameter in distance units

• sigma (float) – broadening parameter

• rstart (float, optional) – minimum limit for integration, default 0.00001

• h (float, optional) – width for trapezoidal integration, default 0.0001

• local (bool, optional) – if True, use the local density instead of global density
default False

• averaged (bool, optional) – if True find the averaged entropy parameters default
False

• switching_function (bool, optional) – if True, use the switching function to
average, otherwise do a simple average over the neighbors. Default False

• ra (float, optional) – cutoff length for switching function used only if switch-
ing_function is True

• M (int, optional) – power for switching function, default 12 used only if switch-
ing_function is True

• N (int, optional) – power for switching function, default 6 used only if switch-
ing_function is True

Returns

Return type None

Notes

The entropy parameters can be accessed by entropy and avg_entropy. For a complete description
of the entropy parameter, see the documentation

The local keyword can be used to use a local density instead of the global one. This method will only work
with neighbor methods that use a cutoff.

calculate_q(q, averaged=False, only_averaged=False, condition=None, clear_condition=False)
Find the Steinhardt parameter q_l for all atoms.

Parameters

3.1. pyscal reference 11

http://pyscal.com/en/latest/methods/entropy_parameters/entropy_parameters.html

pyscal Documentation, Release 2.10.13

• q_l (int or list of ints) – A list of all Steinhardt parameters to be found from
2-12.

• averaged (bool, optional) – If True, return the averaged q values, default False

• only_averaged (bool, optional) – If True, only calculate the averaged part. de-
fault False

• condition (callable or atom property) – Either function which should take
an Atom object, and give a True/False output or an attribute of atom class which has value
or 1 or 0.

• clear_condition (bool, optional) – clear the condition variable for all atoms

Returns

Return type None

Notes

Enables calculation of the Steinhardt parameters [1] q from 2-12. The type of q values depend on the
method used to calculate neighbors. See the description find_neighbors() for more details. If the
keyword average is set to True, the averaged versions of the bond order parameter [2] is returned. If only
the averaged versions need to be calculated, only_averaged keyword can be set to False.

The neighbors over which the q values are calculated can also be filtered. This is done through the argument
condition which is passed as a parameter. condition can be of two types. The first type is a function which
takes an Atom object and should give a True/False value. condition can also be an Atom attribute or a
value from custom values stored in an atom. See cluster_atoms() for more details. If the condition
is equal for both host atom and the neighbor, the neighbor is considered for calculation of q parameters.
This is slightly different from cluster_atoms() where the condition has to be True for both atoms.
condition is only cleared when neighbors are recalculated. Additionally, the keyword clear_condition can
also be used to clear the condition and reset it to 0. By default, condition is applied to both unaveraged and
averaged q parameter calculation. If condition is needed for only averaged q parameters, this function can
be called twice, initially without condition and averaged=False, and then with a condition specified and
averaged=True. This way, the condition will only be applied to the averaged q calculation.

References

calculate_rdf(histobins=100, histomin=0.0, histomax=None)
Calculate the radial distribution function.

Parameters

• histobins (int) – number of bins in the histogram

• histomin (float, optional) – minimum value of the distance histogram. Default
0.0.

• histomax (float, optional) – maximum value of the distance histogram. Default,
the maximum value in all pair distances is used.

Returns

• rdf (array of ints) – Radial distribution function

• r (array of floats) – radius in distance units

calculate_solidneighbors()
Find Solid neighbors of all atoms in the system.

12 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

Parameters None –

Returns

Return type None

Notes

A solid bond is considered between two atoms if the connection between them is greater than 0.6.

calculate_sro(reference_type=1, average=True, shells=2)
Calculate short range order

Parameters

• reference_type (int, optional) – type of the atom to be used a reference. de-
fault 1

• average (bool, optional) – if True, average over all atoms of the reference type
in the system. default True.

Returns vec – The short range order averaged over the whole system for atom of the reference
type. Only returned if average is True. First value is SRO of the first neighbor shell and the
second value corresponds to the second nearest neighbor shell.

Return type list of float

Notes

Calculates the short range order for an AB alloy using the approach by Cowley [1]. Short range order is
calculated as,

𝛼𝑖 = 1− 𝑛𝑖

𝑚𝐴𝑐𝑖

where n_i is the number of atoms of the non reference type among the c_i atoms in the ith shell. m_A is
the concentration of the non reference atom. Please note that the value is calculated for shells 1 and 2 by
default. In order for this to be possible, neighbors have to be found first using the find_neighbors()
method. The selected neighbor method should include the second shell as well. For this purpose
method=cutoff can be chosen with a cutoff long enough to include the second shell. In order to estimate
this cutoff, one can use the calculate_rdf() method.

References

calculate_vorovector(edge_cutoff=0.05, area_cutoff=0.01, edge_length=False)
get the voronoi structure identification vector.

Parameters edge_cutoff (float, optional) – cutoff for edge length. Default 0.05.

area_cutoff [float, optional] cutoff for face area. Default 0.01.

edge_length [bool, optional] if True, a list of unrefined edge lengths are returned. Default false.

Returns vorovector – array of the form (n3, n4, n5, n6)

Return type array like, int

3.1. pyscal reference 13

https://pyscal.readthedocs.io/en/latest/solidliquid.html

pyscal Documentation, Release 2.10.13

Notes

Returns a vector of the form (n3, n4, n5, n6), where n3 is the number of faces with 3 vertices, n4 is the
number of faces with 4 vertices and so on. This can be used to identify structures [1] [2].

The keywords edge_cutoff and area_cutoff can be used to tune the values to minimise the effect of thermal
distortions. Edges are only considered in the analysis if the edge_length/sum(edge_lengths) is at least
edge_cutoff. Similarly, faces are only considered in the analysis if the face_area/sum(face_areas) is at
least face_cutoff.

References

cluster_atoms(condition, largest=True, cutoff=0)
Cluster atoms based on a property

Parameters

• condition (callable or atom property) – Either function which should take
an Atom object, and give a True/False output or an attribute of atom class which has value
or 1 or 0.

• largest (bool, optional) – If True returns the size of the largest cluster. Default
False.

• cutoff (float, optional) – If specified, use this cutoff for calculation of clusters.
By default uses the cutoff used for neighbor calculation.

Returns lc – Size of the largest cluster. Returned only if largest is True.

Return type int

Notes

This function helps to cluster atoms based on a defined property. This property is defined by the user
through the argument condition which is passed as a parameter. condition can be of two types. The first
type is a function which takes an Atom object and should give a True/False value. condition can also be
an Atom attribute or a value from custom values stored in an atom.

When clustering, the code loops over each atom and its neighbors. If the condition is true for both host
atom and the neighbor, they are assigned to the same cluster. For example, a condition to cluster solid
atoms would be,

def condition(atom):
#if both atom is solid
return (atom1.solid)

The same can be done by passing “solid” as the condition argument instead of the above function. Passing
a function allows to evaluate complex conditions, but is slower than passing an attribute.

embed_in_cubic_box()
Embedded the triclinic box in a cubic box

extract_cubic_box(repeat=(3, 3, 3))
Extract a cubic representation of the box from triclinic cell

Parameters repeat (list of ints) – the number of times box should be repeat

Returns

14 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

• cubebox (list of list of floats) – cubic box

• atoms (list of Atom objects) – atoms in the cubic box

find_diamond_neighbors()
Find underlying fcc lattice in diamond

Parameters None –

Returns

Return type None

Notes

This method finds in the underlying fcc/hcp lattice in diamond. It works by the method described in this
publication . For each atom, 4 atoms closest to it are identified. The neighbors of the its neighbors are
further identified and the common neighbors shared with the host atom are selected. These atom will fall
in the underlying fcc lattice for cubic diamond or hcp lattice for hexagonal lattice.

If neighbors are previously calculated, they are reset when this method is used.

find_largestcluster()
Find the largest solid cluster of atoms in the system from all the clusters.

Parameters None –

Returns cluster – the size of the largest cluster

Return type int

Notes

pyscal.core.System.find_clusters() has to be used before using this function.

find_neighbors(method='cutoff', cutoff=None, threshold=2, filter=None, voroexp=1, padding=1.2,
nlimit=6, cells=False, nmax=12, assign_neighbor=True)

Find neighbors of all atoms in the System.

Parameters method ({'cutoff', 'voronoi', 'number'}) – cutoff method finds
neighbors of an atom within a specified or adaptive cutoff distance from the atom. voronoi
method finds atoms that share a Voronoi polyhedra face with the atom. Default, cutoff num-
ber method finds a specified number of closest neighbors to the given atom. Number only
populates

cutoff [{ float, ‘sann’, ‘adaptive’}] the cutoff distance to be used for the cutoff based neighbor calculation
method described above. If the value is specified as 0 or adaptive, adaptive method is used. If the
value is specified as sann, sann algorithm is used.

threshold [float, optional] only used if cutoff=adaptive. A threshold which is used as safe limit for
calculation of cutoff.

filter [{‘None’, ‘type’, ‘type_r’}, optional] apply a filter to nearest neighbor calculation. If the filter
keyword is set to type, only atoms of the same type would be included in the neighbor calculations. If
type_r, only atoms of a different type will be included in the calculation. Default None.

voroexp [int, optional] only used if method=voronoi. Power of the neighbor weight used to weight
the contribution of each atom towards Steinhardt parameter values. Default 1.

padding [double, optional] only used if cutoff=adaptive or cutoff=number. A safe padding
value used after an adaptive cutoff is found. Default 1.2.

3.1. pyscal reference 15

http://dx.doi.org/10.1016/j.cpc.2016.04.001
http://dx.doi.org/10.1016/j.cpc.2016.04.001

pyscal Documentation, Release 2.10.13

nlimit [int, optional] only used if cutoff=adaptive. The number of particles to be considered for the
calculation of adaptive cutoff. Default 6.

nmax [int, optional] only used if cutoff=number. The number of closest neighbors to be found for
each atom. Default 12

Returns

Return type None

Raises

• RuntimeWarning – raised when threshold value is too low. A low threshold value will
lead to ‘sann’ algorithm not converging when finding a neighbor. This function will try to
automatically increase threshold and check again.

• RuntimeError – raised when neighbor search was unsuccessful. This is due to a low
threshold value.

Notes

This function calculates the neighbors of each particle. There are several ways to do this. A complete
description of the methods can be found here.

Method cutoff and specifying a cutoff radius uses the traditional approach being the one in which the
neighbors of an atom are the ones that lie in the cutoff distance around it.

In order to reduce time during the distance sorting during the adaptive methods, pyscal sets an initial guess
for a cutoff distance. This is calculated as,

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 * (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑜𝑥 𝑣𝑜𝑙𝑢𝑚𝑒/𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠)(1/3)

threshold is a safe multiplier used for the guess value and can be set using the threshold keyword.

In Method cutoff, if cutoff='adaptive', an adaptive cutoff is found during runtime for each atom
[1]. Setting the cutoff radius to 0 also uses this algorithm. The cutoff for an atom i is found using,

𝑟𝑐(𝑖) = 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 * ((1/𝑛𝑙𝑖𝑚𝑖𝑡) *
𝑛𝑙𝑖𝑚𝑖𝑡∑︁
𝑗=1

(𝑟𝑖𝑗))

padding is a safe multiplier to the cutoff distance that can be set through the keyword padding. nlimit
keyword sets the limit for the top nlimit atoms to be taken into account to calculate the cutoff radius.

In Method cutoff, if cutoff='sann', sann algorithm is used [2]. There are no parameters to tune sann
algorithm.

The second approach is using Voronoi polyhedra which also assigns a weight to each neighbor in the ratio
of the face area between the two atoms. Higher powers of this weight can also be used [3]. The keyword
voroexp can be used to set this weight.

If method os number, instead of using a cutoff value for finding neighbors, a specified number of closest
atoms are found. This number can be set through the argument nmax.

Warning: Adaptive and number cutoff uses a padding over the intial guessed “neighbor distance”. By
default it is 2. In case of a warning that threshold is inadequate, this parameter should be further
increased. High/low value of this parameter will correspond to the time taken for finding neighbors.

16 Chapter 3. pyscal reference

https://pyscal.readthedocs.io/en/latest/nearestneighbormethods.html

pyscal Documentation, Release 2.10.13

References

find_solids(bonds=0.5, threshold=0.5, avgthreshold=0.6, cluster=True, q=6, cutoff=0,
right=True)

Distinguish solid and liquid atoms in the system.

Parameters

• bonds (int or float, optional) – Minimum number of solid bonds for an atom
to be identified as a solid if the value is an integer. Minimum fraction of neighbors of an
atom that should be solid for an atom to be solid if the value is float between 0-1. Default
0.5.

• threshold (double, optional) – Solid bond cutoff value. Default 0.5.

• avgthreshold (double, optional) – Value required for Averaged solid bond cut-
off for an atom to be identified as solid. Default 0.6.

• cluster (bool, optional) – If True, cluster the solid atoms and return the number
of atoms in the largest cluster.

• q (int, optional) – The Steinhardt parameter value over which the bonds have to be
calculated. Default 6.

• cutoff (double, optional) – Separate value used for cluster classification. If not
specified, cutoff used for finding neighbors is used.

• right (bool, optional) – If true, greater than comparison is to be used for finding
solid particles. default True.

Returns solid – Size of the largest solid cluster. Returned only if cluster=True.

Return type int

Notes

The neighbors should be calculated before running this function. Check find_neighbors() method.

bonds define the number of solid bonds of an atom to be identified as solid. Two particles are said to be
‘bonded’ if [1],

𝑠𝑖𝑗 =
6∑︁

𝑚=−6

𝑞6𝑚(𝑖)𝑞*6𝑚(𝑖) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

where threshold values is also an optional parameter.

If the value of bonds is a fraction between 0 and 1, at least that much of an atom’s neighbors should be
solid for the atom to be solid.

An additional parameter avgthreshold is an additional parameter to improve solid-liquid distinction. In
addition to having a the specified number of bonds,

⟨𝑠𝑖𝑗⟩ > 𝑎𝑣𝑔𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

also needs to be satisfied. In case another q value has to be used for calculation of S_ij, it can be set used
the q attribute. In the above formulations, > comparison for threshold and avgthreshold can be changed to
< by setting the keyword right to False.

If cluster is True, a clustering is done for all solid particles. See find_clusters() for more details.

3.1. pyscal reference 17

pyscal Documentation, Release 2.10.13

References

get_atom(index)
Get the Atom object at the queried position in the list of all atoms in the System.

Parameters index (int) – index of required atom in the list of all atoms.

Returns atom – atom object at the queried position.

Return type Atom object

get_concentration()
Return a dict containing the concentration of the system

Parameters None –

Returns condict – dict of concentration values

Return type dict

get_custom(atom, customkeys)
Get a custom attribute from Atom

Parameters

• atom (Atom object) –

• customkeys (list of strings) – the list of keys to be found

Returns vals – array of custom values

Return type list

get_distance(atom1, atom2, vector=False)
Get the distance between two atoms.

Parameters

• atom1 (Atom object) – first atom

• atom2 (Atom object) – second atom

• vector (bool, optional) – If True, the displacement vector connecting the atoms
is also returned. default false.

Returns distance – distance between the first and second atom.

Return type double

Notes

Periodic boundary conditions are assumed by default.

get_qvals(q, averaged=False)
Get the required q_l (Steinhardt parameter) values of all atoms.

Parameters

• q_l (int or list of ints) – required q_l value with l from 2-12

• averaged (bool, optional) – If True, return the averaged q values, default False

Returns qvals – list of q_l of all atoms.

Return type list of floats

18 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

Notes

The function returns a list of q_l values in the same order as the list of the atoms in the system.

identify_diamond(find_neighbors=True)
Identify diamond structure

Parameters find_neighbors (bool, optional) – If True, find 4 closest neighbors

Returns diamondstructure – dict of structure signature

Return type dict

Notes

Identify diamond structure using the algorithm mentioned in [1]. It is an extended CNA method. The
integers 5, 6, 7, 8, 9 and 10 are assigned to the structure variable of the atom. 5 stands for cubic diamond,
6 stands for first nearest neighbors of cubic diamond and 7 stands for second nearest neighbors of cubic
diamond. 8 signifies hexagonal diamond, the first nearest neighbors are marked with 9 and second nearest
neighbors with 10.

References

iter_atoms()
Iter over atoms

read_inputfile(filename, format='lammps-dump', compressed=False, customkeys=None)
Read input file that contains the information of system configuration.

Parameters

• filename (string) – name of the input file.

• format ({'lammps-dump', 'poscar', 'ase', 'mdtraj'}) – format of the
input file, in case of ase the ASE Atoms object

• compressed (bool, optional) – If True, force to read a gz compressed format,
default False.

• customkeys (list) – A list containing names of headers of extra data that needs to be
read in from the input file.

Returns

Return type None

Notes

format keyword specifies the format of the input file. Currently only a lammps-dump and poscar files are
supported. Additionaly, the widely use Atomic Simulation environment (https://wiki.fysik.dtu.dk/ase/ase/
ase.html). mdtraj objects (http://mdtraj.org/1.9.3/) are also supported by using the keyword ‘mdtraj’ for
format. Please note that triclinic boxes are not yet supported for mdtraj format. Atoms object can also be
used directly. This function uses the traj_process() module to process a file which is then assigned
to system.

compressed keyword is not required if a file ends with .gz extension, it is automatically treated as a com-
pressed file.

Triclinic simulation boxes can also be read in.

3.1. pyscal reference 19

https://wiki.fysik.dtu.dk/ase/ase/ase.html
https://wiki.fysik.dtu.dk/ase/ase/ase.html
http://mdtraj.org/1.9.3/

pyscal Documentation, Release 2.10.13

If custom_keys are provided, this extra information is read in from input files if available. This information
is not passed to the C++ instance of atom, and is stored as a dictionary. It can be accessed directly as
atom.custom[‘customval’]

remap_atoms(remove_images=True, assign=True, remove_atoms=False, dtol=0.1)
Remap atom back into simulation box

Parameters

• pbc (bool, optional) – If True, remove atoms on borders that are repeated

• assign (bool, optional) – If True, assign atoms to the system, otherwise return.

• remove_atoms (bool, optional) – If True, after the atoms, are remapped, remove
those still outside the box.

• rtol (float, optional) – Tolerance for removing atomic positions. Defaullt 0.1

repeat(reps, atoms=None, ghost=False, scale_box=True)
Replicate simulation cell

Parameters

• reps (list of ints of size 3) – repetitions in each direction

• atoms (list of atoms, optional) – if not provided, use atoms that are assigned

• ghost (bool, optional) – If True, assign the new atoms as ghost instead of actual
atoms

reset_neighbors()
Reset the neighbors of all atoms in the system.

Parameters None –

Returns

Return type None

Notes

It is used automatically when neighbors are recalculated.

set_atom(atom)
Return the atom to its original location after modification.

Parameters atom (Atom) – atom to be replaced

Returns

Return type None

Notes

For example, an Atom at location i in the list of all atoms in System can be queried by, atom =
System.get_atom(i), then any kind of modification, for example, the position of the Atom can done
by, atom.pos = [2.3, 4.5, 4.5]. After modification, the Atom can be set back to its position in
System by set_atom().

Although the complete list of atoms can be accessed or set using atoms = sys.atoms, get_atom and
set_atom functions should be used for accessing individual atoms. If an atom already exists at that index
in the list, it will be overwritten and will lead to loss of information.

20 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

set_atom_cutoff(factor=1.0)
Set cutoff for each atom

Parameters factor (float, optional) – factor for multiplication of cutoff value. default
1

Returns

Return type None

Notes

Assign cutoffs for each atom based on the nearest neighbor distance. The cutoff assigned is the average
nearest neighbor distance multiplied by factor.

show(colorby=None, filterby=None)
Plot the system

Parameters

• sys (System object) –

• colorby (string, optional) – property over which the atoms are to be colored.
It can be any attributed of Atom, a custom attribute, or calculated q values which can be
accessed as qx or aqx where x stands for the q number.

• filterby (string, optional) – property over which the atoms are to be filtered
before plotting. It can be any attribute of atom, or a custom value of atom. It should
provide a True or False value.

Returns

Return type None

to_ase(species)
Convert system to an ASE Atoms object

Parameters species (list of string) – The chemical species

Returns

Return type None

to_file(outfile, format='lammps-dump', customkeys=None, customvals=None, compressed=False,
timestep=0, species=None)

Save the system instance to a trajectory file.

Parameters

• outfile (string) – name of the output file

• format (string, {'lammps-dump', 'lammps-data', 'poscar'}) – for-
mat of the output file, default lammps-dump Currently only lammps-dump format is sup-
ported.

• customkeys (list of strings, optional) – a list of extra atom wise values
to be written in the output file.

• customvals (list or list of lists, optional) – If customkey is speci-
fied, customvals take an array of the same length as number of atoms, which contains the
values to be written out.

• compressed (bool, optional) – If true, the output is written as a compressed file.

3.1. pyscal reference 21

pyscal Documentation, Release 2.10.13

• timestep (int, optional) – timestep to be written to file. default 0

• species (None, optional) – species of the atoms. Required if any format other
than ‘lammps-dump’ is used. Required for convertion to ase object.

Returns

Return type None

Notes

to_file method can handle a number of file formats. The most customizable format is the lammps-dump
which can take a custom options using customkeys and customvals. customkeys will be the header written
to the dump file. It can be any Atom attribute, any property stored in custom variable of the Atom,
or calculated q values which can be given by q4, aq4 etc. External values can also be provided using
customvals option. customvals array should be of the same length as the number of atoms in the system.

For all other formats, ASE is used to write out the file, and hence the species keyword needs to be specified.
If initially, an ASE object was used to create the System, species keyword will already be saved, and need
not be specified. In other cases, species should be a list of atomic species in the System. For example
[“Cu”] or [“Cu”, “Al”], depending on the number of species in the System. In the above case, atoms of
type 1 will be mapped to Cu and of type 2 will be mapped to Al. For a complete list of formats that ASE
can handle, see here .

pyscal.core.test()
A simple function to test if the module works

Parameters None –

Returns works – True if the module works and could create a System and Atom object False other-
wise.

Return type bool

class pyscal.catom.Atom
Bases: pybind11_builtins.pybind11_object

Class to store atom details.

Parameters

• pos (list of floats of length 3) – position of the Atom, default [0,0,0]

• id (int) – id of the Atom, default 0

• type (int) – type of the Atom, default 1

Notes

A pybind11 class for holding the properties of a single atom. Various properties of the atom can be accessed
through the attributes and member functions which are described below in detail. Atoms can be created individ-
ually or directly by reading a file. Check the examples for more details on how atoms are created. For creating
atoms directly from an input file check the documentation of System class.

Although an Atom object can be created independently, Atom should be thought of inherently as members of the
System class. All the properties that define an atom are relative to the parent class. System has a list of all
atoms. All the properties of an atom, hence should be calculated through System.

22 Chapter 3. pyscal reference

https://wiki.fysik.dtu.dk/ase/ase/io/io.html

pyscal Documentation, Release 2.10.13

Examples

>>> #method 1 - individually
>>> atom = Atom()
>>> #now set positions of the atoms
>>> atom.pos = [23.0, 45.2, 34.2]
>>> #now set id
>>> atom.id = 23
>>> #now set type
>>> atom.type = 1
>>> #Setting through constructor
>>> atom = Atom([23.0, 45.2, 34.2], 23, 1)

References

Creation of atoms.

property allaq
list of floats. list of all averaged q values of the atom.

property allq
list of floats. list of all q values of the atom.

property angular
Float. The value of angular parameter A of an atom. The angular parameter measures the tetrahe-
dral coordination of an atom. Meaningful values are only returned if the property is calculated using
calculate_angularcriteria().

property avg_angular
Float. The average angular parameter value. Not used currently.

property avg_disorder
Float. The value of averaged disorder parameter.

property avg_energy
Float. Value of averaged energy.

property avg_entropy
Float. Value of averaged entropy parameter.

property avg_sij
float. Value of averaged s_ij which is used for identification of solid atoms. s_ij is defined by

𝑠𝑖𝑗 =

𝑙∑︁
𝑚=−𝑙

𝑞𝑙𝑚(𝑖)𝑞*𝑙𝑚(𝑖)

property avg_volume
float. Averaged version of the Voronoi volume which is calculated as an average over itself and its neigh-
bors. Only calculated when the find_neighbors() using the method=’voronoi’ option is used.

property bonds

property centrosymmetry
Float. The value of centrosymmetry parameter.

property chiparams
Float. The value of chiparameter of an atom. The return value is a vector of length 8. Meaningful values
are only returned if chi params are calculated using calculate_chiparams().

3.1. pyscal reference 23

https://pyscal.readthedocs.io/en/latest/examples.html

pyscal Documentation, Release 2.10.13

property cluster
int. identification number of the cluster that the atom belongs to.

property cna

property common

property condition
int. condition that specifies if an atom is included in the clustering algorithm or not. Only atoms with the
value of condition=1 will be used for clustering in cluster_atoms().

property coordination
int. coordination number of the atom. Coordination will only be updated after neighbors are calculated
using find_neighbors().

property custom
dict. dictionary specfying custom values for an atom. The module only stores the id, type and position
of the atom. If any extra values need to be stored, they can be stored in custom using atom.custom =
{“velocity”:12}. read_inputfile() can also read in extra atom information. By default, custom
values are treated as string.

property cutoff
double. cutoff used for finding neighbors for each atom.

property disorder
Float. The value of disorder parameter.

property edge_lengths
list of floats. For each face, this vector contains the lengths of edges that make up the Voronoi polyhedra of
the atom. Only calculated when the find_neighbors() using the method=’voronoi’ option is used.

property energy
Float. Value of energy.

property entropy
Float. Value of entropy parameter.

property face_perimeters
list of floats. List consisting of the perimeters of each Voronoi face of an atom. Only calculated when the
find_neighbors() using the method=’voronoi’ option is used.

property face_vertices
list of floats. A list of the number of vertices shared between an atom and its neighbors. Only calculated
when the find_neighbors() using the method=’voronoi’ option is used.

get_q()
Calculate the steinhardt parameter q_l value.

Parameters

• q (int or list of ints) – number of the required q_l - from 2-12

• averaged (bool, optional) – If True, return the averaged q values, If False, return
the non averaged ones default False

Returns q_l – the value(s) of the queried Steinhardt parameter(s).

Return type float or list of floats

24 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

Notes

Please check this link for more details about Steinhardts parameters and the averaged versions.

Meaningful values are only returned if calculate_q() is used.

get_qlm()
Get the q_lm values.

Parameters

• q (int) – number of the required q_l - from 2-12

• averaged (bool, optional) – If True, return the averaged qlm values, If False,
return the non averaged ones default False

Returns

• q_lm (complex vector) – vector of complex numbers.

• Meaningful values are only returned if calculate_q() is used.

property ghost
int. int specifying ghost status of the atom.

property id
int. Id of the atom.

property largest_cluster
bool. True if the atom belongs to the largest cluster, False otherwise. Largest cluster is only identified after
using the cluster_atoms() function.

property loc
int. indicates the position of the atom in the list of all atoms.

property local_angles
List of floats of length 2. List of longitude and colatitude of an atom to its neighbors.

property mask
bool. Mask variable for atom. If mask is true, the atom is ignored from calculations.

property neighbor_distance
List of floats. List of neighbor distances of the atom.

property neighbor_vector
List of floats of length 3. List of vectors connecting an atom to its neighbors.

property neighbor_weights
List of floats. Used to weight the contribution of each neighbor atom towards the value of Steinhardt’s
parameters. By default, each atom has a weight of 1 each. However, if find_neighbors() is used with
method=’voronoi’, each neighbor gets a weight proportional to the area shared between the neighboring
atom and host atom.

property neighbors
List of ints. List of neighbors of the atom. The list contains indices of neighbor atoms which indicate their
position in the list of all atoms.

property next_neighbor_distances
double. cutoff used for finding neighbors for each atom.

property next_neighbors
double. cutoff used for finding neighbors for each atom.

3.1. pyscal reference 25

https://pyscal.readthedocs.io/en/latest/steinhardtparameters.html

pyscal Documentation, Release 2.10.13

property pos
List of floats of the type [x, y, z], default [0, 0, 0]. Position of the atom.

set_q()
Set the value of steinhardt parameter q_l.

Parameters

• q (int or list of ints) – number of the required q_l - from 2-12

• val (float or list of floats) – value(s) of Steinhardt parameter(s).

• averaged (bool, optional) – If True, return the averaged q values, If False, return
the non averaged ones default False

Returns

Return type None

property sij
float. Value of s_ij which is used for identification of solid atoms. s_ij is defined by

𝑠𝑖𝑗 =

𝑙∑︁
𝑚=−𝑙

𝑞𝑙𝑚(𝑖)𝑞*𝑙𝑚(𝑖)

property solid
bool. True if the atom is solid, False otherwise. Solid atoms are only identified after using the
find_solids() function.

property sro
Float. The value of short range order parameter.

property structure
int. Indicates the structure of atom. Not used currently.

property surface
bool. True if the atom has at least one liquid neighbor, False otherwise. Surface atoms are only identified
after using the find_solids() function.

property type
int. int specifying type of the atom.

property vertex_numbers
list of floats. For each Voronoi face of the atom, this values includes a List of vertices that constitute the
face. Only calculated when the find_neighbors() using the method=’voronoi’ option is used.

property vertex_positions
list of list of floats. Positions of Voronoi vertices. Only calculated when the find_neighbors() using
the method=’voronoi’ option is used.

property vertex_vectors
list of floats. A list of positions of each vertex of the Voronoi polyhedra of the atom. Only calculated when
the find_neighbors() using the method=’voronoi’ option is used.

property volume
float. Voronoi volume of the atom. The Voronoi volume is only calculated if neighbors are found using the
find_neighbors() using the method=’voronoi’ option.

property vorovector
list of ints. A vector of the form (n3, n4, n5, n6) where n3 is the number of faces with 3 vertices, n4 is
the number of faces with 4 vertices and so on. This can be used to identify structures [1][2]. Vorovector is
calculated if the calculate_vorovector() method is used.

26 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

References

pyscal.crystal_structures module

pyscal module for creating crystal structures.

pyscal.crystal_structures.make_crystal(structure, lattice_constant=1.0, repetitions=None,
ca_ratio=1.633, noise=0)

Create a basic crystal structure and return it as a list of Atom objects and box dimensions.

Parameters

• structure ({'sc', 'bcc', 'fcc', 'hcp', 'diamond', 'a15' or
'l12'}) – type of the crystal structure

• lattice_constant (float, optional) – lattice constant of the crystal structure,
default 1

• repetitions (list of ints of len 3, optional) – of type [nx, ny, nz],
repetions of the unit cell in x, y and z directions. default [1, 1, 1].

• ca_ratio (float, optional) – ratio of c/a for hcp structures, default 1.633

• noise (float, optional) – If provided add normally distributed noise with standard
deviation noise to the atomic positions.

Returns

• atoms (list of Atom objects) – list of all atoms as created by user input

• box (list of list of floats) – list of the type [[xlow, xhigh], [ylow, yhigh], [zlow, zhigh]] where
each of them are the lower and upper limits of the simulation box in x, y and z directions
respectively.

Examples

>>> atoms, box = make_crystal('bcc', lattice_constant=3.48, repetitions=[2,2,2])
>>> sys = System()
>>> sys.assign_atoms(atoms, box)

pyscal.trajectory module

class pyscal.trajectory.Timeslice(trajectory, blocklist)
Bases: object

Timeslice containing info about a single time slice Timeslices can also be added to each

to_ase(species=None)
Get block as Ase objects

Parameters blockno (int) – number of the block to be read, starts from 0

Returns sys

Return type ASE object

to_dict()
Get the required block as data

to_file(outfile, mode='w')
Get block as outputfile

3.1. pyscal reference 27

pyscal Documentation, Release 2.10.13

Parameters

• outfile (string) – name of output file

• mode (string) – write mode to be used, optional default “w” write also can be “a” to
append.

Returns

Return type None

to_system(customkeys=None)
Get block as pyscal system

Parameters blockno (int) – number of the block to be read, starts from 0

Returns sys – pyscal System

Return type System

class pyscal.trajectory.Trajectory(filename)
Bases: object

A Trajectory class for LAMMPS

get_block(blockno)
Get a block from the file as raw data

Parameters blockno (int) – number of the block to be read, starts from 0

Returns data – list of strings containing data

Return type list

load(blockno)
Load the data of a block into memory as a dictionary of numpy arrays

Parameters blockno (int) – number of the block to be read, starts from 0

Returns

Return type None

Notes

When the data of a block is loaded, it is accessible through Trajectory.data[x]. This data can then be
modified. When the block is written out, the modified data is written instead of existing one. But, loaded
data is kept in memory until unloaded using unload method.

unload(blockno)
Unload the data that is loaded to memory using load method

Parameters blockno (int) – number of the block to be read, starts from 0

Returns

Return type None

28 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

pyscal.traj_process module

pyscal module containing methods for processing of a trajectory. Methods for reading of input files formats, writing
of output files etc are provided in this module.

pyscal.traj_process.read_file(filename, format='lammps-dump', compressed=False, cus-
tomkeys=None)

Read input file

Parameters

• filename (string) – name of the input file.

• format ({'lammps-dump', 'poscar', 'ase', 'mdtraj'}) – format of the
input file, in case of ase the ASE Atoms object

• compressed (bool, optional) – If True, force to read a gz compressed format, de-
fault False.

• customkeys (list) – A list containing names of headers of extra data that needs to be
read in from the input file.

Returns

Return type None

pyscal.traj_process.split_trajectory(infile, format='lammps-dump', compressed=False)
Read in a trajectory file and convert it to individual time slices.

Parameters

• filename (string) – name of input file

• format (format of the input file) – only lammps-dump is supported now.

• compressed (bool, optional) – force to read a gz zipped file. If the filename ends
with .gz, use of this keyword is not necessary.

Returns snaps – a list of filenames which contain individual frames from the main trajectory.

Return type list of strings

Notes

This is a wrapper function around split_traj_lammps_dump function.

pyscal.traj_process.write_file(sys, outfile, format='lammps-dump', compressed=False, cus-
tomkeys=None, customvals=None, timestep=0, species=None)

Write the state of the system to a trajectory file.

Parameters

• sys (System object) – the system object to be written out

• outfile (string) – name of the output file

• format (string, optional) – format of the output file

• compressed (bool, default false) – write a .gz format

• customkey (string or list of strings, optional) – If specified, it adds
this custom column to the dump file. Default None.

3.1. pyscal reference 29

pyscal Documentation, Release 2.10.13

• customvals (list or list of lists, optional) – If customkey is specified,
customvals take an array of the same length as number of atoms, which contains the values
to be written out.

• timestep (int, optional) – Specify the timestep value, default 0

• species (None, optional) – species of the atoms. Required if any format other than
‘lammps-dump’ is used. Required for convertion to ase object.

Returns

Return type None

pyscal.misc module

pyscal.misc.compare_atomic_env(infile, atomtype=2, precision=2, format='poscar',
print_results=True, return_system=False)

Compare the atomic environment of given types of atoms in the inputfile. The comparison is made in terms of
Voronoi volume and Voronoi fingerprint.

Parameters

• infile (string) – name of the inputfile

• atomtype (int, optional) – type of the atom default 2

• precision (float, optional) – precision for comparing Voronoi volumes default
3

• format (string, optional) – format of the input file default poscar

• print_results (bool, optional) – if True, print the results. If False, return the
data instead. default True

• return_system (bool, optional) – if True, return the system object. default False

Returns

• vvx (list of floats) – unique Voronoi volumes. Returned only if print results is False

• vrx (list of strings) – unique Voronoi polyhedra. Returned only if print results is False

• vvc (list of ints) – number of unique quantities specified above. Returned only if print results
is False

pyscal.misc.find_tetrahedral_voids(infile, format='poscar', print_results=True, re-
turn_system=False, direct_coordinates=True, preci-
sion=0.1)

Check for tetrahedral voids in the system

Parameters

• infile (string) – name of the input file

• format (string) – format of the input file, optional default poscar

• print_results (bool, optional) – if True, print the results. If False, return the
data instead. default True

• return_system (bool, optional) – if True, return the system object. default False

• direct_coordinates (bool, optional) – if True, results are provided in direct
coordinates default False

• precision (int, optional) – the number of digits to check for distances. default 1

30 Chapter 3. pyscal reference

pyscal Documentation, Release 2.10.13

Returns

• types (list of atom types)

• volumes (list of atom volumes)

• pos (list of atom positions)

• sys (system object, returns only if return_sys is True)

3.1. pyscal reference 31

pyscal Documentation, Release 2.10.13

32 Chapter 3. pyscal reference

PYTHON MODULE INDEX

p
pyscal.catom, 22
pyscal.core, 7
pyscal.crystal_structures, 27
pyscal.misc, 30
pyscal.traj_process, 29
pyscal.trajectory, 27

33

pyscal Documentation, Release 2.10.13

34 Python Module Index

INDEX

A
add_atoms() (pyscal.core.System method), 8
allaq() (pyscal.catom.Atom property), 23
allq() (pyscal.catom.Atom property), 23
angular() (pyscal.catom.Atom property), 23
Atom (class in pyscal.catom), 22
atoms (pyscal.core.System attribute), 7
atoms() (pyscal.core.System property), 8
avg_angular() (pyscal.catom.Atom property), 23
avg_disorder() (pyscal.catom.Atom property), 23
avg_energy() (pyscal.catom.Atom property), 23
avg_entropy() (pyscal.catom.Atom property), 23
avg_sij() (pyscal.catom.Atom property), 23
avg_volume() (pyscal.catom.Atom property), 23

B
bonds() (pyscal.catom.Atom property), 23
box (pyscal.core.System attribute), 7
box() (pyscal.core.System property), 8

C
calculate_angularcriteria()

(pyscal.core.System method), 8
calculate_centrosymmetry()

(pyscal.core.System method), 8
calculate_chiparams() (pyscal.core.System

method), 9
calculate_cna() (pyscal.core.System method), 9
calculate_disorder() (pyscal.core.System

method), 10
calculate_energy() (pyscal.core.System method),

10
calculate_entropy() (pyscal.core.System

method), 11
calculate_q() (pyscal.core.System method), 11
calculate_rdf() (pyscal.core.System method), 12
calculate_solidneighbors()

(pyscal.core.System method), 12
calculate_sro() (pyscal.core.System method), 13
calculate_vorovector() (pyscal.core.System

method), 13

centrosymmetry() (pyscal.catom.Atom property),
23

chiparams() (pyscal.catom.Atom property), 23
cluster() (pyscal.catom.Atom property), 23
cluster_atoms() (pyscal.core.System method), 14
cna() (pyscal.catom.Atom property), 24
common() (pyscal.catom.Atom property), 24
compare_atomic_env() (in module pyscal.misc),

30
condition() (pyscal.catom.Atom property), 24
coordination() (pyscal.catom.Atom property), 24
custom() (pyscal.catom.Atom property), 24
cutoff() (pyscal.catom.Atom property), 24

D
disorder() (pyscal.catom.Atom property), 24

E
edge_lengths() (pyscal.catom.Atom property), 24
embed_in_cubic_box() (pyscal.core.System

method), 14
energy() (pyscal.catom.Atom property), 24
entropy() (pyscal.catom.Atom property), 24
extract_cubic_box() (pyscal.core.System

method), 14

F
face_perimeters() (pyscal.catom.Atom property),

24
face_vertices() (pyscal.catom.Atom property), 24
find_diamond_neighbors() (pyscal.core.System

method), 15
find_largestcluster() (pyscal.core.System

method), 15
find_neighbors() (pyscal.core.System method), 15
find_solids() (pyscal.core.System method), 17
find_tetrahedral_voids() (in module

pyscal.misc), 30

G
get_atom() (pyscal.core.System method), 18

35

pyscal Documentation, Release 2.10.13

get_block() (pyscal.trajectory.Trajectory method),
28

get_concentration() (pyscal.core.System
method), 18

get_custom() (pyscal.core.System method), 18
get_distance() (pyscal.core.System method), 18
get_q() (pyscal.catom.Atom method), 24
get_qlm() (pyscal.catom.Atom method), 25
get_qvals() (pyscal.core.System method), 18
ghost() (pyscal.catom.Atom property), 25

I
id() (pyscal.catom.Atom property), 25
identify_diamond() (pyscal.core.System method),

19
iter_atoms() (pyscal.core.System method), 19

L
largest_cluster() (pyscal.catom.Atom property),

25
load() (pyscal.trajectory.Trajectory method), 28
loc() (pyscal.catom.Atom property), 25
local_angles() (pyscal.catom.Atom property), 25

M
make_crystal() (in module

pyscal.crystal_structures), 27
mask() (pyscal.catom.Atom property), 25
module

pyscal.catom, 22
pyscal.core, 7
pyscal.crystal_structures, 27
pyscal.misc, 30
pyscal.traj_process, 29
pyscal.trajectory, 27

N
neighbor_distance() (pyscal.catom.Atom prop-

erty), 25
neighbor_vector() (pyscal.catom.Atom property),

25
neighbor_weights() (pyscal.catom.Atom prop-

erty), 25
neighbors() (pyscal.catom.Atom property), 25
next_neighbor_distances()

(pyscal.catom.Atom property), 25
next_neighbors() (pyscal.catom.Atom property),

25

P
pos() (pyscal.catom.Atom property), 25
pyscal.catom

module, 22
pyscal.core

module, 7
pyscal.crystal_structures

module, 27
pyscal.misc

module, 30
pyscal.traj_process

module, 29
pyscal.trajectory

module, 27

R
read_file() (in module pyscal.traj_process), 29
read_inputfile() (pyscal.core.System method), 19
remap_atoms() (pyscal.core.System method), 20
repeat() (pyscal.core.System method), 20
reset_neighbors() (pyscal.core.System method),

20

S
set_atom() (pyscal.core.System method), 20
set_atom_cutoff() (pyscal.core.System method),

20
set_q() (pyscal.catom.Atom method), 26
show() (pyscal.core.System method), 21
sij() (pyscal.catom.Atom property), 26
solid() (pyscal.catom.Atom property), 26
split_trajectory() (in module

pyscal.traj_process), 29
sro() (pyscal.catom.Atom property), 26
structure() (pyscal.catom.Atom property), 26
surface() (pyscal.catom.Atom property), 26
System (class in pyscal.core), 7

T
test() (in module pyscal.core), 22
Timeslice (class in pyscal.trajectory), 27
to_ase() (pyscal.core.System method), 21
to_ase() (pyscal.trajectory.Timeslice method), 27
to_dict() (pyscal.trajectory.Timeslice method), 27
to_file() (pyscal.core.System method), 21
to_file() (pyscal.trajectory.Timeslice method), 27
to_system() (pyscal.trajectory.Timeslice method), 28
Trajectory (class in pyscal.trajectory), 28
type() (pyscal.catom.Atom property), 26

U
unload() (pyscal.trajectory.Trajectory method), 28

V
vertex_numbers() (pyscal.catom.Atom property),

26
vertex_positions() (pyscal.catom.Atom prop-

erty), 26

36 Index

pyscal Documentation, Release 2.10.13

vertex_vectors() (pyscal.catom.Atom property),
26

volume() (pyscal.catom.Atom property), 26
vorovector() (pyscal.catom.Atom property), 26

W
write_file() (in module pyscal.traj_process), 29

Index 37

	Highlights
	Getting started
	pyscal reference
	pyscal reference

	Python Module Index
	Index

